983 resultados para Green body
Resumo:
It is rigorously proved that the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The implication of this theorem is briefly discussed.
Resumo:
An electrical-to-green efficiency of more than 10% was demonstrated by intracavity-frequency-doubling a Q-switched diode-side-pumped Nd:YAG laser with a type II lithium triborate (LBO) crystal in a straight plano-concave cavity. An average power of 69.2 W at 532 nm was generated when electrical input power was 666 W. The corresponding electrical-to-green conversion efficiency is 10.4%. To the best of our knowledge, this is the highest electrical-to-green efficiency of second harmonic generation laser systems with side-pumped laser modules, ever reported. At about 66 W of green output power, the power fluctuation over 4 hours was better than +/-0.86%.
Green-Ampt model for layered soils with nonuniform initial water content under unsteady infiltration
Resumo:
Without introducing concentration quenching phenomenon, a few wt% of Tb3+ and Yb3+ ions were doped into a group of easily-fiberized tellurite glasses characterized by loose polyhedron structures and rich interstitial positions. Intense green upconversion emission from Tb3+ ions centered at 539 nm due to transition 5D4→7F5 was observed by direct excitation of Yb3+ ions with a laser diode at 976 nm. Optimizing the concentration ratio of Tb3+/Yb3+, a tellurite glass with composition of 80TeO2-10ZnO-10Na2O (mol%)+1.0wt% Tb2O3+3.0wt% Yb2O3 was found to present the highest green light intensity and therefore is especially suitable for efficient green fiber laser development.
Resumo:
The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and structure dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The characteristics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the coupling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD (fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is observed and the model presented in this paper is shown to be valid.