976 resultados para Gramineae x Diseases and pests
Resumo:
Streptococcus pyogenes is responsible for a variety of infectious diseases and immunological complications. In this study, 91 isolates of S. pyogenes recovered from oropharynx secretions were submitted to antimicrobial susceptibility testing, emm typing and pulsed-field gel electrophoresis (PFGE) analysis. All isolates were susceptible to ceftriaxone, levofloxacin, penicillin G and vancomycin. Resistance to erythromycin and clindamycin was 15.4%, which is higher than previous reports from this area, while 20.9% of the isolates were not susceptible to tetracycline. The macrolide resistance phenotypes were cMLSB (10) and iMLSB (4). The ermB gene was predominant, followed by the ermA gene. Thirty-two emm types and subtypes were found, but five (emm1, emm4, emm12, emm22, emm81) were detected in 48% of the isolates. Three new emm subtypes were identified (emm1.74, emm58.14, emm76.7). There was a strong association between emm type and PFGE clustering. A variety of PFGE profiles as well as emm types were found among tetracycline and erythromycin-resistant isolates, demonstrating that antimicrobial resistant strains do not result from the expansion of one or a few clones. This study provides epidemiological data that contribute to the development of suitable strategies for the prevention and treatment of such infections in a poorly studied area.
Resumo:
Invasive fungal infections (IFI) are life-threatening diseases that are of particular concern in specific debilitated or immunosuppressed populations. Invasive candidiasis (IC) is the most frequent of the IFI, being one of the major causes of nosocomial bloodstream infection and a feared complication in patients with recurrent gastrointestinal surgery or prolonged stay in the intensive-care unit [1,2]. Patients with hematological malignancies or prolonged chemotherapy-induced neutropenia, and those with allogeneic hematopoietic stem cell transplantation (allo-HSCT), represent the groups at highest risk for developing invasive aspergillosis (IA), which is associated with a high mortality rate despite the increasing availability of antifungal therapies [3,4]. An increasing incidence of IA has also been reported in non-neutropenic immunosuppressed populations such as solid-organ transplant recipients or steroid-treated patients with chronic pulmonary diseases [5]. Early diagnosis of IFI is crucial for improving chances of survival [6], but is particularly challenging owing to the lack of reliable diagnostic methods [7,8]. Significant efforts during the last few decades have focused on the prevention of these severe complications. Antifungal prophylaxis in high-risk patients has been shown to reduce the incidence of IA in patients with onco-hematological malignancies [9] and that of IC in surgical intensive-care unit patients [10]. However, its widespread use raises concerns about costs, toxicity, and the risk of emergence of resistant fungal species such as non-Aspergillus moulds or non-albicansCandida spp. [4,11,12]. Prophylactic strategies usually rely on the identification of host risk factors resulting from clinical conditions (type and duration of immunosuppression, underlying diseases, and extrinsic interventions) [8,13]. Recent advances in the field of immunogenetics may change our perspective of, and approach to, preventive strategies with the identification of subgroups of patients exhibiting a genetic predisposition to IFI.
Resumo:
BACKGROUND Respiratory syncytial virus (RSV) is an important pathogen in lower respiratory tract infections (LRTI) in infants, but there are limited data concerning patients with underlying conditions and children older than 2 years of age. METHODS We have designed a prospective observational multicenter national study performed in 26 Spanish hospitals (December 2011-March 2012). Investigational cases were defined as children with underlying chronic diseases and were compared with a group of previously healthy children (proportion 1:2). Clinical data were compared between the groups. RESULTS A total of 1763 children hospitalized due to RSV infection during the inclusion period were analyzed. Of them, 225 cases and 460 healthy children were enrolled in the study. Underlying diseases observed were respiratory (64%), cardiovascular (25%), and neurologic (12%), as well as chromosomal abnormalities (7·5%), immunodeficiencies (6·7%), and inborn errors of metabolism (3·5%). Cases were statistically older than previously healthy children (average age: 16·3 versus 5·5 months). Cases experienced hypoxemia more frequently (P < 0·001), but patients with respiratory diseases required oxygen therapy more often (OR: 2·99; 95% CI: 1·03-8·65). Mechanical ventilation was used more in patients with cardiac diseases (OR: 3·0; 95% CI: 1·07-8·44) and in those with inborn errors of metabolism (OR: 12·27; 95% CI: 2·11-71·47). This subgroup showed a higher risk of admission to the PICU (OR: 6·7, 95% CI: 1·18-38·04). Diagnosis of pneumonia was more frequently found in cases (18·2% versus 9·3%; P < 0·01). CONCLUSIONS A significant percentage of children with RSV infection have underlying diseases and the illness severity is higher than in healthy children.
Resumo:
CD66b is a member of the carcinoembryonic antigen family, which mediates the adhesion between neutrophils and to endothelial cells. Allergen-specific immunotherapy is widely used to treat allergic diseases, and the molecular mechanisms underlying this therapy are poorly understood. The present work was undertaken to analyze A) the in vitro effect of allergens and immunotherapy on cell-surface CD66b expression of neutrophils from patients with allergic asthma and rhinitis and B) the in vivo effect of immunotherapy on cell-surface CD66b expression of neutrophils from nasal lavage fluid during the spring season. Myeloperoxidase expression and activity was also analyzed in nasal lavage fluid as a general marker of neutrophil activation. RESULTS CD66b cell-surface expression is upregulated in vitro in response to allergens, and significantly reduced by immunotherapy (p<0.001). Myeloperoxidase activity in nasal lavage fluid was also significantly reduced by immunotherapy, as were the neutrophil cell-surface expression of CD66b and myeloperoxidase (p<0.001). Interestingly, CD66b expression was higher in neutrophils from nasal lavage fluid than those from peripheral blood, and immunotherapy reduced the number of CD66+MPO+ cells in nasal lavage fluid. Thus, immunotherapy positive effects might, at least in part, be mediated by the negative regulation of the CD66b and myeloperoxidase activity in human neutrophils.
Resumo:
Several studies point to the increased risk of reactivation of latent tuberculosis infection (LTBI) in patients with chronic inflammatory arthritis (CIAs) after using tumour necrosis factor (TNF)a blockers. To study the incidence of active mycobacterial infections (aMI) in patients starting TNFa blockers, 262 patients were included in this study: 109 with rheumatoid arthritis (RA), 93 with ankylosing spondylitis (AS), 44 with juvenile idiopathic arthritis (JIA) and 16 with psoriatic arthritis (PsA). All patients had indication for anti-TNFa therapy. Epidemiologic and clinical data were evaluated and a simple X-ray and tuberculin skin test (TST) were performed. The control group included 215 healthy individuals. The follow-up was 48 months to identify cases of aMI. TST positivity was higher in patients with AS (37.6%) than in RA (12.8%), PsA (18.8%) and JIA (6.8%) (p < 0.001). In the control group, TST positivity was 32.7%. Nine (3.43%) patients were diagnosed with aMI. The overall incidence rate of aMI was 86.93/100,000 person-years [95% confidence interval (CI) 23.6-217.9] for patients and 35.79/100,000 person-years (95% CI 12.4-69.6) for control group (p < 0.001). All patients who developed aMI had no evidence of LTBI at the baseline evaluation. Patients with CIA starting TNFa blockers and no evidence of LTBI at baseline, particularly with nonreactive TST, may have higher risk of aMI.
Resumo:
Previously published scientific papers have reported a negative correlation between drinking water hardness and cardiovascular mortality. Some ecologic and case-control studies suggest the protective effect of calcium and magnesium concentration in drinking water. In this article we present an analysis of this protective relationship in 538 municipalities of Comunidad Valenciana (Spain) from 1991-1998. We used the Spanish version of the Rapid Inquiry Facility (RIF) developed under the European Environment and Health Information System (EUROHEIS) research project. The strategy of analysis used in our study conforms to the exploratory nature of the RIF that is used as a tool to obtain quick and flexible insight into epidemiologic surveillance problems. This article describes the use of the RIF to explore possible associations between disease indicators and environmental factors. We used exposure analysis to assess the effect of both protective factors--calcium and magnesium--on mortality from cerebrovascular (ICD-9 430-438) and ischemic heart (ICD-9 410-414) diseases. This study provides statistical evidence of the relationship between mortality from cardiovascular diseases and hardness of drinking water. This relationship is stronger in cerebrovascular disease than in ischemic heart disease, is more pronounced for women than for men, and is more apparent with magnesium than with calcium concentration levels. Nevertheless, the protective nature of these two factors is not clearly established. Our results suggest the possibility of protectiveness but cannot be claimed as conclusive. The weak effects of these covariates make it difficult to separate them from the influence of socioeconomic and environmental factors. We have also performed disease mapping of standardized mortality ratios to detect clusters of municipalities with high risk. Further standardization by levels of calcium and magnesium in drinking water shows changes in the maps when we remove the effect of these covariates.
Resumo:
Oral anticoagulants are frequently used in clinical practice. The most important complication of oral anticoagulation is major bleeding. The incidence of major bleeding is about 2-3%/year in randomized controlled trials but may be considerably higher under real life conditions. Major bleeding risk in patients receiving oral anticoagulants depends on factors related to anticoagulation itself (intensity and quality), patient-related factors (demographic characteristics and comorbid diseases), and concomitant treatments with antiplatelet or non-steroidal anti-inflammatory drugs. The role of clinical prediction rules for major bleeding is discussed.
Resumo:
Exposure to fine particles and noise has been linked to cardiovascular diseases and elevated cardiovascular mortality affecting the worldwide population. Residence and/or work in proximity to emission sources as for example road traffic leads to an elevated exposure and a higher risk for adverse health effects. Highway maintenance workers spend most of their work time in traffic and are exposed regularly to particles and noise. The aims of this thesis were to provide a better understanding of the workers' mixed exposure to particles and noise and to assess cardiopulmonary short term health effects in relation to this exposure. Exposure and health data were collected in collaboration with 8 maintenance centers of the Swiss Road Maintenance Services located in the cantons Bern, Fribourg and Vaud in western Switzerland. Repeated measurements with 18 subjects were conducted during 50 non-consecutive work shifts between Mai 2010 and February 2012, equally distributed over all seasons. In the first part of this thesis we tested and validated measurements of ultrafine particles with a miniature diffusion size classifier (miniDiSC) - a novel particle counting device that was used for the exposure assessment during highway maintenance work. We found that particle numbers and average particle size measured by the miniDiSC were highly correlated with data from the P-TRAK, a condensation particle counter (CPC), as well as from a scanning mobility particle sizer (SMPS). However, the miniDiSC measured significantly more particles than the P-TRAK and significantly less than the SMPS in its full size range. Our data suggests that the instrument specific cutoffs were the main reason for the different particle counts. The first main objective of this thesis was to investigate the exposure of highway maintenance workers to air pollutants and noise, in relation to the different maintenance activities. We have seen that the workers are regularly exposed to high particle and noise levels. This was a consequence of close proximity to highway traffic and the use of motorized working equipment such as brush cutters, chain saws, generators and pneumatic hammers during which the highest exposure levels occurred. Although exposure to air pollutants were not critical if compared to occupational exposure limits, the elevated exposure to particles and noise may lead to a higher risk for cardiovascular diseases in this worker population. The second main objective was to investigate cardiopulmonary short-term health effects in relation to the particle and noise exposure during highway maintenance work. We observed a PM2.5 related increase of the acute-phase inflammation markers C-reactive protein and serum amyloid A and a decrease of TNFa. Heart rate variability increased as a consequence of particle as well as noise exposure. Increased high frequency power indicated a stronger parasympathetic influence on the heart. Elevated noise levels during recreational time, after work, were related to increased blood pressure. Our data confirmed that highway maintenance workers are exposed to elevated levels of particles and noise as compared to the average population. This exposure poses a cardiovascular health risk and it is therefore important to make efforts to better protect the workers health. The use of cleaner machines during maintenance work would be a major step to improve the workers' situation. Furthermore, regulatory policies with the aim of reducing combustion and non-combustion emissions from road traffic are important for the protection of workers in traffic environments and the entire population.
Resumo:
The prognosis of pulmonary hypertension (PH), especially idiopathic pulmonary arterial hypertension (IPAH), has improved during the recent years. The Swiss Registry for PH represents the collaboration of the various centres in Switzerland dealing with PH and serves as an important tool in quality control. The objective of the study was to describe the treatment and clinical course of this orphan disease in Switzerland. We analyzed data from 222 of 252 adult patients, who were included in the registry between January 1999 and December 2004 and suffered from either PAH, PH associated with lung diseases or chronic thromboembolic PH (CTEPH) with respect to the following data: NYHA class, six-minute walking distance (6-MWD), haemodynamics, treatments and survival. If compared with the calculated expected figures the one, two and three year mean survivals in IPAH increased from 67% to 89%, from 55% to 78% and from 46% to 73%, respectively. Most patients (90%) were on oral or inhaled therapy and only 10 patients necessitated lung transplantation. Even though pulmonary endarterectomy (PEA) was performed in only 7 patients during this time, the survival in our CTEPH cohort improved compared with literature data and seems to approach outcomes usually seen after PEA. The 6-MWD increased maximally by 52 m and 59 m in IPAH and CTEPH, respectively, but in the long term returned to or below baseline values, despite the increasing use of multiple specific drugs (overall in 51% of IPAH and 29% of CTEPH). Our national registry data indicate that the overall survival of IPAH and presumably CTEPH seems to have improved in Switzerland. Although the 6-MWD improved transiently, it decreased in the long term despite specific and increasingly combined drug treatment. Our findings herewith underscore the progressive nature of the diseases and the need for further intense research in the field.
Resumo:
Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.
Resumo:
Perfusion lung scan, whether associated with a ventilation lung scan or not, is frequently used in the diagnosis of pulmonary emboli. The characteristics of perfusion lung scan are reviewed. The added diagnostic value of standard chest X-ray and of ventilation scan is discussed, as well as its use in the intensive care unit.
Resumo:
The inhalation of airborne pollutants such as asbestos or silica is linked to inflammation of the lung, fibrosis and lung cancer. How the presence of pathogenic dust is recognised, and how chronic inflammatory diseases are triggered are poorly understood. We will se show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to IL-1b secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. In a model of asbestos inhalation, Nalp3_/_ mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory ''danger" receptor.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
Genomic plasticity of human chromosome 8p23.1 region is highly influenced by two groups of complex segmental duplications (SDs), termed REPD and REPP, that mediate different kinds of rearrangements. Part of the difficulty to explain the wide range of phenotypes associated with 8p23.1 rearrangements is that REPP and REPD are not yet well characterized, probably due to their polymorphic status. Here, we describe a novel primate-specific gene family, named FAM90A (family with sequence similarity 90), found within these SDs. According to the current human reference sequence assembly, the FAM90A family includes 24 members along 8p23.1 region plus a single member on chromosome 12p13.31, showing copy number variation (CNV) between individuals. These genes can be classified into subfamilies I and II, which differ in their upstream and 5′-untranslated region sequences, but both share the same open reading frame and are ubiquitously expressed. Sequence analysis and comparative fluorescence in situ hybridization studies showed that FAM90A subfamily II suffered a big expansion in the hominoid lineage, whereas subfamily I members were likely generated sometime around the divergence of orangutan and African great apes by a fusion process. In addition, the analysis of the Ka/Ks ratios provides evidence of functional constraint of some FAM90A genes in all species. The characterization of the FAM90A gene family contributes to a better understanding of the structural polymorphism of the human 8p23.1 region and constitutes a good example of how SDs, CNVs and rearrangements within themselves can promote the formation of new gene sequences with potential functional consequences.
Resumo:
Because the eye is protected by ocular barriers but is also easily accessible, direct intravitreous injections of therapeutic proteins allow for specific and targeted treatment of retinal diseases. Low doses of proteins are required in this confined environment and a long time of residency in the vitreous is expected, making the eye the ideal organ for local proteic therapies. Monthly intravitreous injection of Ranibizumab, an anti-VEGF Fab has become the standard of care for patients presenting wet AMD. It has brought the proof of concept that administering proteins into the physiologically low proteic concentration vitreous can be performed safely. Other antibodies, Fab, peptides and growth factors have been shown to exert beneficial effects on animal models when administered within the therapeutic and safe window. To extend the use of such biomolecules in the ophthalmology practice, optimization of treatment regimens and efficacy is required. Basic knowledge remains to be increased on how different proteins/peptides penetrate into the eye and the ocular tissues, distribute in the vitreous, penetrate into the retinal layers and/or cells, are eliminated from the eye or metabolized. This should serve as a basis for designing novel drug delivery systems. The later should be non-or minimally invasive and should allow for a controlled, scalable and sustained release of the therapeutic proteins in the ocular media. This paper reviews the actual knowledge regarding protein delivery for eye diseases and describes novel non-viral gene therapy technologies particularly adapted for this purpose.