920 resultados para Grain
Resumo:
The fabric of sediments recovered at sites drilled on the Indus Fan, Owen Ridge, and Oman margin during Ocean Drilling Program Leg 117 was examined by scanning electron microscopy to document changes that accompany sediment burial. Two sediment types were studied: (1) biogenic sediments consisting of a variety of marly nannofossil and nannofossil oozes and chalks and (2) terrigenous sediments consisting of fine-grained turbidites deposited in association with the Indus Fan. Biogenic sediments were examined with samples from the seafloor to depths of 306 m below seafloor (mbsf) on the Owen Ridge (Site 722) and 368 mbsf on the Oman margin (Sites 723 and 728). Over these depth ranges the biogenic sediments are characterized by a random arrangement of microfossils and display little chemical diagenetic alteration. The microfossils are dispersed within a fine-grained matrix that is predominantly microcrystalline carbonate particles on the Owen Ridge and clay and organic matter on the Oman margin. Sediments with abundant siliceous microfossils display distinct, open fabrics with high porosity. Porosity reduction resulting from gravitational compaction appears to be the primary process affecting fabric change in the biogenic sediment sections. Fabric of illite-rich clayey silts and silty claystones from the Indus Fan (Site 720) and Owen Ridge (Sites 722 and 731) was examined for a composite section extending from 45 to 985 mbsf. In this section fabric of the fine-grained turbidites changes from one with small flocculated clay domains, random particle arrangement, and high porosity to a fabric with larger domains, strong preferred particle orientation roughly parallel to bedding, and lower porosity. These changes are accomplished by a growth in domain size, primarily through increasing face-to-face contacts, and by particle reorientation which is characterized by a sharp increase in alignment with bedding between 200 and 400 mbsf. Despite extensive particle reorientation, flocculated clay fabric persists in the deepest samples examined, particularly adjacent to silt grains, and the sediments lack fissility. Fabric changes over the 45-985 mbsf interval occur in response to gravitational compaction. Porosity reduction and development of preferred particle orientation in the Indus Fan and Owen Ridge sections occur at greater depths than outlined in previous fabric models for terrigenous sediments as a consequence of a greater abundance of silt and a greater abundance of illite and chlorite clays.
Resumo:
Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.
Resumo:
Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954), with the sand, silt, and clay boundaries based on the Wentworth (1922) scale. Thus, the sand, silt, and clay fractions are composed of particles whose diameters range from 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied regardless of sediment type and origin; therefore, the sediment names used in this table may differ from those used elsewhere in this volume, e.g., a silt composed of nannofossils in this table may be called a nannofossil ooze in a site-summary chapter.
Resumo:
The study presented in this PhD memory aim at better define and quantify the present timeerosion processes in glacial and proglacial domain. The Glacier des Bossons, situated in theMont-Blanc massif (Haute-Savoie, France), is a good example of a natural and nonanthropizedsystem which allows us to study this topic. This glacier lies on two mainlithologies (the Mont-Blanc granite and the metamorphic bedrock) and this peculiarity is usedto determine the origin of the glacial sediments. The sediments were sampled at the glaciersurface and at the glacier sole and also in the subglacial streams in order to understand themechanisms of mechanical erosion and particle transportation in glacial domain. The study ofthe granulometric distribution and the origin of the sediments were performed by a lithologicanalysis at macro-scale (naked-eye) and a geochemical analysis at micro-scale (U-Pb datingof zircons). These analyses allowed specifying the characteristics of glacial erosion andtransport. (1) the supraglacial sediments derived from the erosion of the rocky valley sides aremainly coarse and the glacial transport does not mix these clasts with those derived from thesub-glacial erosion, except in the lower tongue; (2) the sub-glacial erosion rates areinhomogeneous, erosion under the temperate glacier (0.4-0.8 mm/yr) is at least sixteen timesmore efficient than the erosion under the cold glacier (0.025-0.05 mm/yr); (3) the sub-glacialsediments contain a silty and sandy fraction, resulting from processes of abrasion andcrushing, which is evacuated by sub-glacial streams. The high-resolution temporal acquisitionof hydro-sedimentary data during the 2010 melt season, between the May 5th and theSeptember 17th, allowed defining the seasonal behavior of the hydrologic and sedimentaryfluxes. The sediment exportation occurs mainly during the melt season therefore, quantify thesediment fluxes in the Bossons stream and measure regularly the topographic evolution of thefluvio-glacial system allows to perform a sedimentary balance of the erosion of glacial andnon-glacial domains. During the year 2010, about 3000 tons of sediments were eroded with430 tons settled on the fluvio-glacial system. By analyzing the evolution of suspendedparticulate matter concentrations in the Bossons stream upstream and downstream the fluvioglacialsystem, the part of glacial erosion and non-glacial denudation in the sedimentarybalance could be proportioned. The erosion during the stormy events of the uncoveredmoraines, confining the fluvio-glacial system of the Bossons stream, furnishes at least 59% ofthe sediments exported by the Bossons stream and glacial erosion (41% of the flux) istherefore less efficient comparatively. The long-term evolution of the glacial systems inperiod of global warming would show a sustained erosion of proglacial environments(mountain sides and moraines) recently exposed and therefore an increasing of the detritalfluxes. The Glacier des Bossons protects the summit of the Mont-Blanc, the differentialerosion between zones under the ice and non-glacial could lead to an increase of thedifference of altitude between valleys and summits.
Resumo:
Sediments from the ODP Site 1085A were studied to investigate the impacts of global cooling in the Middle and Late Miocene on the climate in Southwestern Africa. The size composition of the sediment was analysed emphasising the silt fraction. A comparison with the modern grain size distribution and suitable transport processes made it possible to assign specific transport processes to the grain size composition. Three processes are considered for transport of terrigeneous silt: while there was no evidence found for (1) transport by ocean currents, the analyses showed signals of (2) wind transport indicating dry conditions associated with a cool climate and (3) fluvial transport that points to humid and warm conditions. Three climatic phases were defined. The first phase from 13.8 to 11.8 Myr reveals a stable humid climate in Southwest Africa independent of the Antarctic glaciations. During the second phase from 11.8 to 10.4 Myr the regional climate cooled considerably but was not drier. Additionally, the climate during this phase reacted to the Antarctic glaciations. This cooling-trend continued during phase 3 from 10.4 to 9.0 Myr with a significant increase in dust input, pointing to overall drier conditions. However, fluvial transport still remained as the main source.
Resumo:
Composition of clay minerals in the <0.001 mm size fraction from the uppermost layer of bottom sediments in the northern Amur Bay was determined by X-ray powder diffraction analysis, and enrichment of 33 elements in the <0.001 mm and <0.01 mm size fractions of surface sediments from a number of sites at the marginal filter of the Razdol'naya River were studied by ICP-MS. Fe, U, and chalcophile elements occur in the highest concentrations in sediments from all sampling sites within the filter. The bottom sediments are not enriched in trace, alkali, and alkaline earth elements. Maximum concentrations of chemical elements were found in deposits from the brackish part of the marginal filter, perhaps, because of formation of Fe and Mn (Al) hydroxides. Bottom sediments at the boundary between the brackish and marine parts of the filter contain the lowest concentrations of the examined elements.
Resumo:
Hole 1256C was cored 88.5 m into basement, and Hole 1256D, the deep reentry hole, was cored 502 m into basement during Ocean Drilling Program Leg 206. Hole 1256D is located ~30 m south of Hole 1256C (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). A thick massive flow drilled in both holes, Units 1256C-18 and 1256D-1, consists of a single cooling unit of cryptocrystalline to fine-grained basalt, interpreted as a ponded lava, 32 m and at least 74.2 m thick, respectively. This ponded flow gives us a unique opportunity to examine textural variations from the glassy, folded crust of the lava pond recovered from the top of Unit 1256C-18 through the coarse-grained, thick massive lava body to the unusually recrystallized and deformed base cored in Unit 1256C-18. Some detailed descriptions of the textures and grain size variations through the lava pond (Units 1256C-18 and 1256D-1), with special reference to the recrystallization of the base of Unit 1256C-18, are presented here.
Resumo:
Grain-size records of the terrigenous and calcareous silt fraction, preservation of planktic foraminifera, and benthic foraminiferal stable-isotope data (delta13C, delta18O values of C. wuellerstorfi) at ODP Site 927 on the Ceará Rise (5°27.7'N, 44°28.8'W), are used to reconstruct variations in the history of bottom current strength, ventilation, and carbonate corrosiveness of deep waters during the time interval from 0.8 to 0.3 Ma. Glacial periods are characterized by generally smaller mean sizes of the terrigenous sortable silt fraction (mean(SS)), lower delta13C values, and poorer preservation of planktic foraminifera compared to interglacials. This indicates lower bottom current speeds, larger nutrient contents and more corrosive deep water. By contrast, larger mean(SS) sizes, higher delta13C values, and well preserved planktic foraminifera indicate strong circulation and a well ventilated deep-water mass during interglacials. The observed changes are most likely related to the weakening and strengthening of circulation of Lower North Atlantic Deep Water (LNADW). Cross-spectral analysis between the mean(SS) and benthic delta18O records reveals that minima in mean(SS) occur about 7.6 k.y. after the maximum in ice volume. This indicates a considerable lag time between ice-shield induced changes in LNADW production and subsequent changes in the velocity of LNADW flow in the western equatorial Atlantic. Striking changes in bottom current speed occur regularly during glacial to interglacial transitions. Extremely fine mean(SS) minima point to an almost complete shutdown of bottom current vigor in response to a cessation of LNADW production caused by an enhanced melt water release during the initial phases of deglaciation. However, each of the fine minima extremes is followed by a rapid shift to very high mean(SS) values that indicate strong bottom currents, and hence, vigorous LNADW flow during the early interglacials. After the onset of glacial Stage 12, generally poorer carbonate preservation and higher variability is registered. This coincides with a global decrease in carbonate preservation during the mid-Brunhes (mid-Brunhes dissolution event). Detailed grain-size analysis of the calcareous fine fraction (<63 µm) revealed a considerable reduction of particles in the fraction from 7 to 63 µm during periods of enhanced dissolution. This indicates a preferential dissolution of larger planktic foraminiferal fragments which leads to an enrichment of coccoliths in the calcareous fine fraction.
Resumo:
Uniaxial strain consolidation experiments were conducted to determine elastic and plastic properties and to estimate the permeability of sediments from 0 to 200 meters below seafloor at Ocean Drilling Program Sites 1194 and 1198. Plastic deformation is described by compression indices, which range from 0.19 to 0.37. Expansion indices, the elastic deformation measured during unload/reload cycles on samples, vary from 0.02 to 0.029. Consolidation experiments provide lower bounds on permeability between 5.4 x 10**-16 m**2 and 1.9 x 10**-18 m**2, depending on the consolidation state of the sample.
Resumo:
We report analyses of porosity and permeability of core samples from Site 1193 in the Northern Marion Platform, Sites 1196 and 1199 in the Southern Marion Platform, and Sites 1194, 1195, 1197, and 1198 from the slopes of these platforms. The samples include 415 horizontal 1-in plugs, 290 vertical 1-in plugs, and 23 whole-core pieces. Porosity and permeability analyses were possible for most, but not all, samples. Grain density measurements were also obtained for the horizontal plugs. Representative photomicrographs are provided of thin sections from 139 of the horizontal plugs and the 23 whole-core pieces.
Resumo:
The effects of water saturation and open pore space on the seismic velocities of crystalline rocks are extremely important when comparing laboratory data to in situ geophysical observations (e.g., Dortman and Magid, 1969; Nur and Simmons, 1969; Christensen and Salisbury, 1975). The existence of fractured rocks, flow breccias and drained pillows in oceanic crustal layer 2a, for instance, may appreciably reduce seismic velocities in that layer (Hyndman, 1976). Laboratory data assessing the influence of porosity and water saturation on seismic velocities of oceanic crustal rocks would certainly aid interpretation of marine geophysical data. Igneous rocks recovered during Leg 58 of the Deep Sea Drilling Project, in the Shikoku Basin and Daito Basin in the North Philippine Sea, are extremely vesicular, as evidenced by shipboard measurements of porosities, which range from 0 to 30 per cent (see reports on Sites 442, 443, 444, and 446, this volume). Samples with this range of porosities afford an excellent opportunity to examine the influence of porosity and water saturation on seismic velocities of oceanic basalts. This paper presents compressional-wave velocities to confining pressures of 1.5 kbars for water-saturated and air-dried basalt samples from the North Philippine Sea. Samples used in this study are from sites 442, 443 and 444 in the Shikoku Basin and Site 446 in the Daito Basin. Excellent negative correlation between porosity and compressional-wave velocity demonstrates that waterfilled pore space can significantly reduce compressionalwave velocities in porous basalts. Velocities measured in air-dried samples indicate that the velocity difference between dry samples and saturated samples is small for porosities exceeding 10 per cent, and very large for lower porosities.