924 resultados para Gradient estimation
Resumo:
A statistical–dynamical regionalization approach is developed to assess possible changes in wind storm impacts. The method is applied to North Rhine-Westphalia (Western Germany) using the FOOT3DK mesoscale model for dynamical downscaling and ECHAM5/OM1 global circulation model climate projections. The method first classifies typical weather developments within the reanalysis period using K-means cluster algorithm. Most historical wind storms are associated with four weather developments (primary storm-clusters). Mesoscale simulations are performed for representative elements for all clusters to derive regional wind climatology. Additionally, 28 historical storms affecting Western Germany are simulated. Empirical functions are estimated to relate wind gust fields and insured losses. Transient ECHAM5/OM1 simulations show an enhanced frequency of primary storm-clusters and storms for 2060–2100 compared to 1960–2000. Accordingly, wind gusts increase over Western Germany, reaching locally +5% for 98th wind gust percentiles (A2-scenario). Consequently, storm losses are expected to increase substantially (+8% for A1B-scenario, +19% for A2-scenario). Regional patterns show larger changes over north-eastern parts of North Rhine-Westphalia than for western parts. For storms with return periods above 20 yr, loss expectations for Germany may increase by a factor of 2. These results document the method's functionality to assess future changes in loss potentials in regional terms.
Resumo:
With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intenstity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans.
Resumo:
In this article, we present additional support of Duffield's (2003, 2005) distinction between Underlying Competence and Surface Competence. Duffield argues that a more fine-grained distinction between levels of competence and performance is warranted and necessary. While underlying competence is categorical, surface competence is more probabilistic and gradient, being sensitive to lexical and constructional contingencies, including the contextual appropriateness of a given construction. We examine a subset of results from a study comparing native and learner competence of properties at the syntax-discourse interface. Specifically, we look at the acceptability of Clitic Right Dislocation in native and L2 Spanish, in discourse-appropriate context. We argue that Duffield's distinction is a possible explanation of our results.
Resumo:
The authors study the role of ocean heat transport (OHT) in the maintenance of a warm, equable, ice-free climate. An ensemble of idealized aquaplanet GCM calculations is used to assess the equilibrium sensitivity of global mean surface temperature and its equator-to-pole gradient (ΔT) to variations in OHT, prescribed through a simple analytical formula representing export out of the tropics and poleward convergence. Low-latitude OHT warms the mid- to high latitudes without cooling the tropics; increases by 1°C and ΔT decreases by 2.6°C for every 0.5-PW increase in OHT across 30° latitude. This warming is relatively insensitive to the detailed meridional structure of OHT. It occurs in spite of near-perfect atmospheric compensation of large imposed variations in OHT: the total poleward heat transport is nearly fixed. The warming results from a convective adjustment of the extratropical troposphere. Increased OHT drives a shift from large-scale to convective precipitation in the midlatitude storm tracks. Warming arises primarily from enhanced greenhouse trapping associated with convective moistening of the upper troposphere. Warming extends to the poles by atmospheric processes even in the absence of high-latitude OHT. A new conceptual model for equable climates is proposed, in which OHT plays a key role by driving enhanced deep convection in the midlatitude storm tracks. In this view, the climatic impact of OHT depends on its effects on the greenhouse properties of the atmosphere, rather than its ability to increase the total poleward energy transport.
Resumo:
In this paper, we present a polynomial-based noise variance estimator for multiple-input multiple-output single-carrier block transmission (MIMO-SCBT) systems. It is shown that the optimal pilots for noise variance estimation satisfy the same condition as that for channel estimation. Theoretical analysis indicates that the proposed estimator is statistically more efficient than the conventional sum of squared residuals (SSR) based estimator. Furthermore, we obtain an efficient implementation of the estimator by exploiting its special structure. Numerical results confirm our theoretical analysis.
Resumo:
It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Resumo:
The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.
Resumo:
Sea surface temperature (SST) can be estimated from day and night observations of the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) by optimal estimation (OE). We show that exploiting the 8.7 μm channel, in addition to the “traditional” wavelengths of 10.8 and 12.0 μm, improves OE SST retrieval statistics in validation. However, the main benefit is an improvement in the sensitivity of the SST estimate to variability in true SST. In a fair, single-pixel comparison, the 3-channel OE gives better results than the SST estimation technique presently operational within the Ocean and Sea Ice Satellite Application Facility. This operational technique is to use SST retrieval coefficients, followed by a bias-correction step informed by radiative transfer simulation. However, the operational technique has an additional “atmospheric correction smoothing”, which improves its noise performance, and hitherto had no analogue within the OE framework. Here, we propose an analogue to atmospheric correction smoothing, based on the expectation that atmospheric total column water vapour has a longer spatial correlation length scale than SST features. The approach extends the observations input to the OE to include the averaged brightness temperatures (BTs) of nearby clear-sky pixels, in addition to the BTs of the pixel for which SST is being retrieved. The retrieved quantities are then the single-pixel SST and the clear-sky total column water vapour averaged over the vicinity of the pixel. This reduces the noise in the retrieved SST significantly. The robust standard deviation of the new OE SST compared to matched drifting buoys becomes 0.39 K for all data. The smoothed OE gives SST sensitivity of 98% on average. This means that diurnal temperature variability and ocean frontal gradients are more faithfully estimated, and that the influence of the prior SST used is minimal (2%). This benefit is not available using traditional atmospheric correction smoothing.
Resumo:
Optimal estimation (OE) and probabilistic cloud screening were developed to provide lake surface water temperature (LSWT) estimates from the series of (advanced) along-track scanning radiometers (ATSRs). Variations in physical properties such as elevation, salinity, and atmospheric conditions are accounted for through the forward modelling of observed radiances. Therefore, the OE retrieval scheme developed is generic (i.e., applicable to all lakes). LSWTs were obtained for 258 of Earth's largest lakes from ATSR-2 and AATSR imagery from 1995 to 2009. Comparison to in situ observations from several lakes yields satellite in situ differences of −0.2 ± 0.7 K for daytime and −0.1 ± 0.5 K for nighttime observations (mean ± standard deviation). This compares with −0.05 ± 0.8 K for daytime and −0.1 ± 0.9 K for nighttime observations for previous methods based on operational sea surface temperature algorithms. The new approach also increases coverage (reducing misclassification of clear sky as cloud) and exhibits greater consistency between retrievals using different channel–view combinations. Empirical orthogonal function (EOF) techniques were applied to the LSWT retrievals (which contain gaps due to cloud cover) to reconstruct spatially and temporally complete time series of LSWT. The new LSWT observations and the EOF-based reconstructions offer benefits to numerical weather prediction, lake model validation, and improve our knowledge of the climatology of lakes globally. Both observations and reconstructions are publically available from http://hdl.handle.net/10283/88.
Resumo:
Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.
Resumo:
This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.
Resumo:
Optimal estimation (OE) is applied as a technique for retrieving sea surface temperature (SST) from thermal imagery obtained by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on Meteosat 9. OE requires simulation of observations as part of the retrieval process, and this is done here using numerical weather prediction fields and a fast radiative transfer model. Bias correction of the simulated brightness temperatures (BTs) is found to be a necessary step before retrieval, and is achieved by filtered averaging of simulations minus observations over a time period of 20 days and spatial scale of 2.5° in latitude and longitude. Throughout this study, BT observations are clear-sky averages over cells of size 0.5° in latitude and longitude. Results for the OE SST are compared to results using a traditional non-linear retrieval algorithm (“NLSST”), both validated against a set of 30108 night-time matches with drifting buoy observations. For the OE SST the mean difference with respect to drifter SSTs is − 0.01 K and the standard deviation is 0.47 K, compared to − 0.38 K and 0.70 K respectively for the NLSST algorithm. Perhaps more importantly, systematic biases in NLSST with respect to geographical location, atmospheric water vapour and satellite zenith angle are greatly reduced for the OE SST. However, the OE SST is calculated to have a lower sensitivity of retrieved SST to true SST variations than the NLSST. This feature would be a disadvantage for observing SST fronts and diurnal variability, and raises questions as to how best to exploit OE techniques at SEVIRI's full spatial resolution.
Resumo:
Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.
Resumo:
We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.