997 resultados para Gold-leaf.
Resumo:
The defensive strategy of amphibians against predator attack relies heavily on the secretion of noxious/toxic chemical cocktails from specialized skin granular glands. Bioactive peptides constitute a major component of secretions in many species and the most complex are produced by neotropical leaf frogs of the sub-family Phyllomedusinae. We recently reported that these skin secretions contain elements of both the granular gland peptidome and transcriptome and that polyadenylated mRNAs constituting the latter are protected from degradation by interactions with endogenous amphipathic peptides. This thus permits parallel amino acid sequencing of peptides and nucleic acid sequencing of cloned precursor transcripts from single lyophilized samples of secretion. Here we report that the protection afforded is sufficiently robust to permit transcriptome studies by cloning of full-length polyadenylated peptide precursor encoding mRNAs from libraries constructed using ambient temperature air-dried skin from recently deceased specimens as source material. The technique was sufficiently sensitive to permit the identification of cDNAs encoding antimicrobial peptides constituted by six different isoforms of phylloseptin and two dermaseptins. Also, for the first time, establishment of the nucleic acid and amino acid sequence of the precursor encoding the phyllomedusine frog skin bradykinin-related peptide, phyllokinin, from cloned cDNA, was achieved. These data unequivocally demonstrate that the granular gland transcriptome persists in air-dried amphibian skin—a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.
Resumo:
The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and the North American pickerel frog (Rana palustris) occupy different ecological niches on two different continents with no overlap in geographical distribution. R. palustris skin secretions contain a formidable array of antimicrobial peptides including homologs of brevinin-1, esculentin-1, esculentin-2, ranatuerin-2, a temporin and a family of peptides considered of unique structural attributes when isolated, palustrins 1–3. Here we describe the structures of mature peptides and precursors of eight putative antimicrobial peptides from the skin secretion of the Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis). Each peptide represents a structural homolog of respective peptide families isolated from R. palustris, including two peptides identical in primary structure to palustrin 1c and palustrin 3b. Additionally, two peptides were found to be structural homologs of ranatuerin 2B and ranatuerin 2P from the closely-related North American species, Rana berlandieri (the Rio Grande leopard frog) and Rana pipiens (the Northern leopard frog), respectively. Both palustrins and ranatuerins have hitherto been considered unique to North American ranid frogs. The use of primary structures of amphibian skin antimicrobial peptides is thus questionable as a taxonomic device or alternatively, the micro-evolution and/or ancestry of ranid frogs is more highly complex than previously thought.
Resumo:
Since the discovery of a series of Au-based catalysts by Haruta et al. considerable progress has been made in understanding the active role of Au in CO oxidation catalysis. This review provides a summary of recent theoretical work performed in this field; in particular it addresses DFT studies of CO oxidation catalysis over free and supported gold nanoparticles. Several properties of the Au particles have been found to contribute to their unique catalytic activity. Of these properties, the low-coordination state of the Au atoms is arguably the most pertinent, although other properties of the Au cluster atoms, such as electronic charge, cannot be ignored. The current consensuses regarding the mechanism for CO oxidation over Au-based catalysts is also discussed. Finally, water-enhanced catalysis of CO oxidation on Au clusters is summarized.