958 resultados para Geology, Stratigraphic -- Jurassic -- Catalonia -- Bac Grillera, Mountains
Resumo:
Throughout their history mountain communities have had to adapt to changing environmental and socio-economic conditions. They have developed strategies and specialized knowledge to sustain their livelihoods in a context of adverse climatic events and constant change. As negotiations and discussions on climate change emphasize the critical need for locally relevant and community owned adaptation strategies, there is a need for new tools to capitalize on this local knowledge and endogenous potential for innovation. The toolkit Promoting Local Innovation (PLI) was designed by the Centre for Development and Environment (CDE) of the University of Bern, Switzerland, to facilitate a participatory social learning process which identifies locally available innovations that can be implemented for community development. It is based on interactive pedagogy and joint learning among different stakeholders in the local context. The tried-and-tested tool was developed in the Andean region in 2004, and then used in International Union for Conservation of Nature (IUCN) climate change adaptation projects in Thailand, Burkina Faso, Senegal, and Chile. These experiences showed that PLI can be used to involve all relevant stakeholders in establishing strategies and actions needed for rural communities to adapt to climate change impacts, while building on local innovation potential and promoting local ownership
Resumo:
We conducted a stratigraphic analysis of the South Polar Layered Deposits (SPLDs) in Promethei Lingula (PL, Mars) based on the identification of regional unconformities at visible and radar wavelengths. According to the terrestrial classification, this approach constrains the stratigraphy of the region and remedies the ambiguous interpretation of stratigraphy through marker layers, bypassing the problem related to the morphologic and radiometric appearance of the layers. Thus, the approach does not exclude diverse classifications, but complements them, whereas other discriminant elements are doubtful or difficult/impossible to be defined. Using this approach, we defined two stratigraphic units (or synthems: PL1 and PL2) in PL, which are morphologically different and divided by a regional unconformity (AuR1). This stratigraphic architecture implies that the geological history of PL has been conditioned by periodic changes in climate, which in turn are related to orbital variations of Mars.
Resumo:
The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.
Resumo:
This Strategy and Action Plan was written within the framework of the project on Sustainable Land Management in the High Pamir and Pamir-Alai Mountains (PALM). PALM is an integrated transboundary initiative of the governments of the Kyrgyz Republic and the Republic of Tajikistan. It aims to address the interlinked problems of land degradation and poverty within a region that is one of Central Asia’s crucial sources of freshwater and a location of biodiversity hotspots. The project is executed by the Committee on Environment Protection in Tajikistan and the National Center for Mountain Regions Development in Kyrgyzstan, with fi nancial support from the Global Environment Facility (GEF) and other donors. The United Nations Environment Programme (UNEP) is the GEF Implementing Agency for the project, and the United Nations University (UNU) is the International Executing Agency. This Strategy and Action Plan integrates the work of three main teams of experts, namely the Pamir-Alai Transboundary Strategy and Action Plan (PATSAP) team, the Legal Task Forces, and a team of Natural Disaster Risk specialists. The PATSAP team was coordinated by the Centre for Development and Environment (CDE), University of Bern, Switzerland. The Legal Task Force was led by the Australian Centre for Agriculture and Law of the University of New England (UNE), and responsibility for the Natural Disaster Risk assessment was with the Central- Asian Institute of Applied Geosciences (CAIAG) in Bishkek, Kyrgyzstan. The development of the strategy took place from June 2009 to October 2010. The activities included fi eld study tours for updating the information base with fi rst-hand information from the local level, coordination meetings with actors from the region, and two multi-level stakeholder forums conducted in Khorog and Osh to identify priorities and to collect ideas for concrete action plans. The baseline information collected for the Strategy and Action Plan has been compiled by the experts and made available as reports1. A joint multi-level stakeholder forum was conducted in Jirgitol, Tajikistan, for in-depth discussion of the transboundary aspects. In August 2010, the draft Strategy and Action Plan was distributed among local, national, and international actors for consultation, and their comments were discussed at feedback forums in Khorog and Bishkek. This Strategy and Action Plan is intended as a recommendation. Nevertheless, it proposes concrete mechanisms for implementing the proposed sustainable land management (SLM) activities: The Regional Natural Resources Governance Framework provides the legal and policy concepts, principles, and regulatory requirements needed to create an enabling environment for SLM in the High Pamir and Pamir-Alai region at the transboundary, national, and local levels. The priority directions outlined provide a framework for the elaboration of rayon-level strategies and for strategies on specifi c topics (forestry, livestock, etc.), as well as for further development of government programmes and international projects. The action plans may serve as a pool of concrete ideas, which can be taken up by diff erent institutions and in smaller or larger projects. Finally, this document provides a basis for the elaboration and signing of targeted cooperation agreements on land use and management between the leaders of Osh oblast (Kyrgyz Republic), Gorno Badakhshan Autonomous Oblast, and Jirgitol rayon (Republic of Tajikistan).
Resumo:
This paper discusses the effects of global change in African mountains, with the example of Mount Kenya. The geographical focus is the northwestern, semi-arid foot zone of the mountain (Laikipia District). Over the past 50 years, this area has experienced rapid and profound transformation, the respective processes of which are all linked to global change. The main driving forces behind these processes have been political and economic in nature. To these an environmental change factor has been added in recent years – climate change. After introducing the area of research, the paper presents three dimensions of global change that are manifested in the region and largely shape its development: Socio-political change, economic change, environmental change. For the regions northwest of Mount Kenya, climate models predict important changes in rainfall distribution that will have a profound impact on freshwater availability and management. The results presented here are based on research undertaken northwest of Mount Kenya within the framework of a series of long-term Kenyan-Swiss research programmes that began in the early 1980s.
Resumo:
The deeply eroded West Gondwana Orogen is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks, such as eclogites. The position of these eclogites marks the suture zone between colliding cratons, and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. Here we investigate the metamorphic conditions and age of high-pressure and ultrahigh-pressure eclogites from Mali, Togo and NE-Brazil and demonstrate that continental subduction occurred within 20 million years over at least a 2,500-km-long section of the orogen during the Ediacaran. We consider this to be the earliest evidence of large-scale deep-continental subduction and consequent appearance of Himalayan-scale mountains in the geological record. The rise and subsequent erosion of such mountains in the Late Ediacaran is perfectly timed to deliver sediments and nutrients that are thought to have been necessary for the subsequent evolution of sustainable life on Earth.
Resumo:
The bovine RPCI-42 BAC library was screened to construct a sequence-ready ~4 Mb single contig of 92 BAC clones on BTA 1q12. The contig covers the region between the genes KRTAP8P1 and CLIC6. This genomic segment in cattle is of special interest as it contains the dominant gene responsible for the hornless or polled phenotype in cattle. The construction of the BAC contig was initiated by screening the bovine BAC library with heterologous cDNA probes derived from 12 human genes of the syntenic region on HSA 21q22. Contig building was facilitated by BAC end sequencing and chromosome walking. During the construction of the contig, 165 BAC end sequences and 109 single-copy STS markers were generated. For comparative mapping of 25 HSA 21q22 genes, genomic PCR primers were designed from bovine EST sequences and the gene-associated STSs mapped on the contig. Furthermore, bovine BAC end sequence comparisons against the human genome sequence revealed significant matches to HSA 21q22 and allowed the in silico mapping of two new genes in cattle. In total, 31 orthologues of human genes located on HSA 21q22 were directly mapped within the bovine BAC contig, of which 16 genes have been cloned and mapped for the first time in cattle. In contrast to the existing comparative bovine-human RH maps of this region, these results provide a better alignment and reveal a completely conserved gene order in this 4 Mb segment between cattle, human and mouse. The mapping of known polled linked BTA 1q12 microsatellite markers allowed the integration of the physical contig map with existing linkage maps of this region and also determined the exact order of these markers for the first time. Our physical map and transcript map may be useful for positional cloning of the putative polled gene in cattle.
Resumo:
The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The postnappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent precollisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.
Resumo:
The paper presents the results of a multi-year baseline study project in which 10 sectors ranging from agriculture to natural hazards were assessed by a transdisciplinary Swiss–Tajik research team. This knowledge base was enhanced in a development strategy workshop that brought together stakeholders from the local to the international levels. The methodology applied was found appropriate to initiate a broad reflection and negotiation process among various stakeholder groups, leading to a joint identification of possible measures to be taken. Knowledge—and its enhancement through the involvement of all stakeholder levels— appeared to be an effective carrier of innovation and changes of attitudes, thus containing the potential to effectively contribute to sustainable development in marginalized and resource-poor mountain areas.
Resumo:
Determining the role of different precipitation periods for peak discharge generation is crucial for both projecting future changes in flood probability and for short- and medium-range flood forecasting. In this study, catchment-averaged daily precipitation time series are analyzed prior to annual peak discharge events (floods) in Switzerland. The high number of floods considered – more than 4000 events from 101 catchments have been analyzed – allows to derive significant information about the role of antecedent precipitation for peak discharge generation. Based on the analysis of precipitation times series, a new separation of flood-related precipitation periods is proposed: (i) the period 0 to 1 day before flood days, when the maximum flood-triggering precipitation rates are generally observed, (ii) the period 2 to 3 days before flood days, when longer-lasting synoptic situations generate "significantly higher than normal" precipitation amounts, and (iii) the period from 4 days to 1 month before flood days when previous wet episodes may have already preconditioned the catchment. The novelty of this study lies in the separation of antecedent precipitation into the precursor antecedent precipitation (4 days before floods or earlier, called PRE-AP) and the short range precipitation (0 to 3 days before floods, a period when precipitation is often driven by one persistent weather situation like e.g., a stationary low-pressure system). A precise separation of "antecedent" and "peak-triggering" precipitation is not attempted. Instead, the strict definition of antecedent precipitation periods permits a direct comparison of all catchments. The precipitation accumulating 0 to 3 days before an event is the most relevant for floods in Switzerland. PRE-AP precipitation has only a weak and region-specific influence on flood probability. Floods were significantly more frequent after wet PRE-AP periods only in the Jura Mountains, in the western and eastern Swiss plateau, and at the outlet of large lakes. As a general rule, wet PRE-AP periods enhance the flood probability in catchments with gentle topography, high infiltration rates, and large storage capacity (karstic cavities, deep soils, large reservoirs). In contrast, floods were significantly less frequent after wet PRE-AP periods in glacial catchments because of reduced melt. For the majority of catchments however, no significant correlation between precipitation amounts and flood occurrences is found when the last 3 days before floods are omitted in the precipitation amounts. Moreover, the PRE-AP was not higher for extreme floods than for annual floods with a high frequency and was very close to climatology for all floods. The fact that floods are not significantly more frequent nor more intense after wet PRE-AP is a clear indicator of a short discharge memory of Pre-Alpine, Alpine and South Alpine Swiss catchments. Our study poses the question whether the impact of long-term precursory precipitation for floods in such catchments is not overestimated in the general perception. The results suggest that the consideration of a 3–4 days precipitation period should be sufficient to represent (understand, reconstruct, model, project) Swiss Alpine floods.