978 resultados para Geological Survey (U.S.). Water Resources Division


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On cover: U.S. Department of the Interior, Geological Survey, Conservation Division; U.S. Department of Agriculture, Forest Service, Bridger-Teton National Forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latest issue consulted: 2004, v. 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No. 1 issued as its Report for 1881/82.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting future need for water resources has traditionally been, at best, a crude mixture of art and science. This has prevented the evaluation of water need from being carried out in either a consistent or comprehensive manner. This inconsistent and somewhat arbitrary approach to water resources planning led to well publicised premature developments in the 1970's and 1980's but privatisation of the Water Industry, including creation of the Office of Water Services and the National Rivers Authority in 1989, turned the tide of resource planning to the point where funding of schemes and their justification by the Regulators could no longer be assumed. Furthermore, considerable areas of uncertainty were beginning to enter the debate and complicate the assessment It was also no longer appropriate to consider that contingencies would continue to lie solely on the demand side of the equation. An inability to calculate the balance between supply and demand may mean an inability to meet standards of service or, arguably worse, an excessive provision of water resources and excessive costs to customers. United Kingdom Water Industry Research limited (UKWlR) Headroom project in 1998 provided a simple methodology for the calculation of planning margins. This methodology, although well received, was not, however, accepted by the Regulators as a tool sufficient to promote resource development. This thesis begins by considering the history of water resource planning in the UK, moving on to discuss events following privatisation of the water industry post·1985. The mid section of the research forms the bulk of original work and provides a scoping exercise which reveals a catalogue of uncertainties prevalent within the supply-demand balance. Each of these uncertainties is considered in terms of materiality, scope, and whether it can be quantified within a risk analysis package. Many of the areas of uncertainty identified would merit further research. A workable, yet robust, methodology for evaluating the balance between water resources and water demands by using a spreadsheet based risk analysis package is presented. The technique involves statistical sampling and simulation such that samples are taken from input distributions on both the supply and demand side of the equation and the imbalance between supply and demand is calculated in the form of an output distribution. The percentiles of the output distribution represent different standards of service to the customer. The model allows dependencies between distributions to be considered, for improved uncertainties to be assessed and for the impact of uncertain solutions to any imbalance to be calculated directly. The method is considered a Significant leap forward in the field of water resource planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques are developed for the visual interpretation of drainage features from satellite imagery. The process of interpretation is formalised by the introduction of objective criteria. Problems of assessing the accuracy of maps are recognized, and a method is developed for quantifying the correctness of an interpretation, in which the more important features are given an appropriate weight. A study was made of imagery from a variety of landscapes in Britain and overseas, from which maps of drainage networks were drawn. The accuracy of the mapping was assessed in absolute terms, and also in relation to the geomorphic parameters used in hydrologic models. Results are presented relating the accuracy of interpretation to image quality, subjectivity and the effects of topography. It is concluded that the visual interpretation of satellite imagery gives maps of sufficient accuracy for the preliminary assessment of water resources, and for the estimation of geomorphic parameters. An examination is made of the use of remotely sensed data in hydrologic models. It is proposed that the spectral properties of a scene are holistic, and are therefore more efficient than conventional catchment characteristics. Key hydrologic parameters were identified, and were estimated from streamflow records. The correlation between hydrologic variables and spectral characteristics was examined, and regression models for streamflow were developed, based solely on spectral data. Regression models were also developed using conventional catchment characteristics, whose values were estimated using satellite imagery. It was concluded that models based primarily on variables derived from remotely sensed data give results which are as good as, or better than, models using conventional map data. The holistic properties of remotely sensed data are realised only in undeveloped areas. In developed areas an assessment of current land-use is a more useful indication of hydrologic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bahamas is a small island nation that is dealing with the problem of freshwater shortage. All of the country’s freshwater is contained in shallow lens aquifers that are recharged solely by rainfall. The country has been struggling to meet the water demands by employing a combination of over-pumping of aquifers, transport of water by barge between islands, and desalination of sea water. In recent decades, new development on New Providence, where the capital city of Nassau is located, has created a large area of impervious surfaces and thereby a substantial amount of runoff with the result that several of the aquifers are not being recharged. A geodatabase was assembled to assess and estimate the quantity of runoff from these impervious surfaces and potential recharge locations were identified using a combination of Geographic Information Systems (GIS) and remote sensing. This study showed that runoff from impervious surfaces in New Providence represents a large freshwater resource that could potentially be used to recharge the lens aquifers on New Providence.