895 resultados para Geographical computer applications
Resumo:
Web 1.0 referred to the early, read-only internet; Web 2.0 refers to the ‘read-write web’ in which users actively contribute to as well as consume online content; Web 3.0 is now being used to refer to the convergence of mobile and Web 2.0 technologies and applications. One of the most important developments in mobile 3.0 is geography: with many mobile phones now equipped with GPS, mobiles promise to “bring the internet down to earth” through geographically-aware, or locative media. The internet was earlier heralded as “the death of geography” with predictions that with anyone able to access information from anywhere, geography would no longer matter. But mobiles are disproving this. GPS allows the location of the user to be pinpointed, and the mobile internet allows the user to access locally-relevant information, or to upload content which is geotagged to the specific location. It also allows locally-specific content to be sent to the user when the user enters a specific space. Location-based services are one of the fastest-growing segments of the mobile internet market: the 2008 AIMIA report indicates that user access of local maps increased by 347% over the previous 12 months, and restaurant guides/reviews increased by 174%. The central tenet of cultural geography is that places are culturally-constructed, comprised of the physical space itself, culturally-inflected perceptions of that space, and people’s experiences of the space (LeFebvre 1991). This paper takes a cultural geographical approach to locative media, anatomising the various spaces which have emerged through locative media, or “the geoweb” (Lake 2004). The geoweb is such a new concept that to date, critical discourse has treated it as a somewhat homogenous spatial formation. In order to counter this, and in order to demonstrate the dynamic complexity of the emerging spaces of the geoweb, the paper provides a topography of different types of locative media space: including the personal/aesthetic in which individual users geotag specific physical sites with their own content and meanings; the commercial, like the billboards which speak to individuals as they pass in Minority Report; and the social, in which one’s location is defined by the proximity of friends rather than by geography.
Resumo:
With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning.
Resumo:
Hazard and reliability prediction of an engineering asset is one of the significant fields of research in Engineering Asset Health Management (EAHM). In real-life situations where an engineering asset operates under dynamic operational and environmental conditions, the lifetime of an engineering asset can be influenced and/or indicated by different factors that are termed as covariates. The Explicit Hazard Model (EHM) as a covariate-based hazard model is a new approach for hazard prediction which explicitly incorporates both internal and external covariates into one model. EHM is an appropriate model to use in the analysis of lifetime data in presence of both internal and external covariates in the reliability field. This paper presents applications of the methodology which is introduced and illustrated in the theory part of this study. In this paper, the semi-parametric EHM is applied to a case study so as to predict the hazard and reliability of resistance elements on a Resistance Corrosion Sensor Board (RCSB).
Resumo:
In-place digital augmentation enhances the experience of physical spaces through digital technologies that are directly accessible within that space. This can take place in many forms and ways, e.g., through location-aware applications running on the individuals’ portable devices, such as smart phones, or through large static devices, such as public displays, which are located within the augmented space and accessible by everyone. The hypothesis of this study is that in-place digital augmentation, in the context of civic participation, where citizens collaboratively aim at making their community or city a better place, offers significant new benefits, because it allows access to services or information that are currently inaccessible to urban dwellers where and when they are needed: in place. This paper describes our work in progress deploying a public screen to promote civic issues in public, urban spaces, and to encourage public feedback and discourse via mobile phones.
Resumo:
Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power lines from a cluttered background is one of the most important and challenging tasks. In this paper, a novel method is proposed, specifically for power line detection from aerial images. A pulse coupled neural filter is developed to remove background noise and generate an edge map prior to the Hough transform being employed to detect straight lines. An improved Hough transform is used by performing knowledge-based line clustering in Hough space to refine the detection results. The experiment on real image data captured from a UAV platform demonstrates that the proposed approach is effective for automatic power line detection.
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.
Resumo:
Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.
Resumo:
The relationship between multiple cameras viewing the same scene may be discovered automatically by finding corresponding points in the two views and then solving for the camera geometry. In camera networks with sparsely placed cameras, low resolution cameras or in scenes with few distinguishable features it may be difficult to find a sufficient number of reliable correspondences from which to compute geometry. This paper presents a method for extracting a larger number of correspondences from an initial set of putative correspondences without any knowledge of the scene or camera geometry. The method may be used to increase the number of correspondences and make geometry computations possible in cases where existing methods have produced insufficient correspondences.
Resumo:
The evolution of organisms that cause healthcare acquired infections (HAI) puts extra stress on hospitals already struggling with rising costs and demands for greater productivity and cost containment. Infection control can save scarce resources, lives, and possibly a facility’s reputation, but statistics and epidemiology are not always sufficient to make the case for the added expense. Economics and Preventing Healthcare Acquired Infection presents a rigorous analytic framework for dealing with this increasingly serious problem. ----- Engagingly written for the economics non-specialist, and brimming with tables, charts, and case examples, the book lays out the concepts of economic analysis in clear, real-world terms so that infection control professionals or infection preventionists will gain competence in developing analyses of their own, and be confident in the arguments they present to decision-makers. The authors: ----- Ground the reader in the basic principles and language of economics. ----- Explain the role of health economists in general and in terms of infection prevention and control. ----- Introduce the concept of economic appraisal, showing how to frame the problem, evaluate and use data, and account for uncertainty. ----- Review methods of estimating and interpreting the costs and health benefits of HAI control programs and prevention methods. ----- Walk the reader through a published economic appraisal of an infection reduction program. ----- Identify current and emerging applications of economics in infection control. ---- Economics and Preventing Healthcare Acquired Infection is a unique resource for practitioners and researchers in infection prevention, control and healthcare economics. It offers valuable alternate perspective for professionals in health services research, healthcare epidemiology, healthcare management, and hospital administration. ----- Written for: Professionals and researchers in infection control, health services research, hospital epidemiology, healthcare economics, healthcare management, hospital administration; Association of Professionals in Infection Control (APIC), Society for Healthcare Epidemiologists of America (SHEA)
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, an explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Webbased Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these webbased tools for collaborative decision making.
Resumo:
In Orissa state, India, the DakNet system supports asynchronous Internet communication between an urban hub and rural nodes. DakNet is noteworthy in many respects, not least in how the system leverages existing transport infrastructure. Wi-Fi transceivers mounted on local buses send and receive user data from roadside kiosks, for later transfer to/from the Internet via wireless protocols. This store-and-forward system allows DakNet to offer asynchronous communication capacity to rural users at low cost. The original ambition of the DakNet system was to provide email and SMS facilities to rural communities. Our 2008 study of the communicative ecology surrounding the DakNet system revealed that this ambition has now evolved – in response to market demand – to the extent that e-shopping (rather than email) has become the primary driver behind the DakNet offer.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
The current understanding of students’ group metacognition is limited. The research on metacognition has focused mainly on the individual student. The aim of this study was to address the void by developing a conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments. An initial conceptual framework based on the literature from metacognition, cooperative learning, cooperative group metacognition, and computer supported collaborative learning was used to inform the study. In order to achieve the study aim, a design research methodology incorporating two cycles was used. The first cycle focused on the within-group metacognition for sixteen groups of primary school students working together around the computer; the second cycle included between-group metacognition for six groups of primary school students working together on the Knowledge Forum® CSCL environment. The study found that providing groups with group metacognitive scaffolds resulted in groups planning, monitoring, and evaluating the task and team aspects of their group work. The metacognitive scaffolds allowed students to focus on how their group was completing the problem-solving task and working together as a team. From these findings, a revised conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments was generated.
Resumo:
The traditional means for isolating applications from each other is via the use of operating system provided “process” abstraction facilities. However, as applications now consist of multiple fine-grained components, the traditional process abstraction model is proving to be insufficient in ensuring this isolation. Statistics indicate that a high percentage of software failure occurs due to propagation of component failures. These observations are further bolstered by the attempts by modern Internet browser application developers, for example, to adopt multi-process architectures in order to increase robustness. Therefore, a fresh look at the available options for isolating program components is necessary and this paper provides an overview of previous and current research on the area.