991 resultados para Geo-spatial datasets
Resumo:
The present study helped to understand the trend in rainfall patterns at smaller spatial scales and the large regional differences in the variability of rainfall. The effect of land use and orography on the diurnal variability is also understood. But a better understanding on the long term variation in rainfall is possible by using a longer dataset,which may provide insight into the rainfall variation over country during the past century. The basic mechanism behind the interannual rainfall variability would be possible with numerical studies using coupled Ocean-Atmosphere models. The regional difference in the active-break conditions points to the significance of regional studies than considering India as a single unit. The underlying dynamics of diurnal variability need to be studied by making use of a high resolution model as the present study could not simulate the local onshore circulation. Also the land use modification in this study, selected a region, which is surrounded by crop land. This implies the high possibility for the conversion of the remaining region to agricultural land. Therefore the study is useful than considering idealized conditions, but the adverse effect of irrigated crop is more than non-irrigated crop. Therefore, such studies would help to understand the climate changes occurred in the recent period. The large accumulation of rainfall between 300-600 m height of western Ghats has been found but the reason behind this need to be studied, which is possible by utilizing datasets that would better represent the orography and landuse over the region in high resolution model. Similarly a detailed analysis is needed to clearly identify the causative relations of the predictors identified with the predictant and the physical reasons behind them. New approaches that include nonlinear relationships and dynamical variables from model simulations can be included in the existing statistical models to improve the skill of the models. Also the statistical models for the forecasts of monsoon have to be continually updated.
Resumo:
This thesis entitled spatial and temporal variarion of microbial community structure in surficial sediments of cochin estuary.In the estuarine and coastal systems, organic matter (OM) is derived not only from autochthonous primary production, but also from allochthonous (terrestrial) organic matter (OM) delivered by river discharge and runoff. A significant portion of the OM sinks through the water column and is ultimately stored in carbon pool in the sediments.Analysis of spatial and temporal variation in benthic microbial community of a tropical estuary was conducted for the first time using non selective measures that affirms that PLFA approach is a sensitive and reliable method in determining microbial community structures of surficial sediments of estuary.The close relationship between the concentrations of the microbial fatty acids and total biomass indicates that bacteria could account for the largest proportion of the biomass in the sediments.This is first study that has documented the changes in microbial community composition linkage to biotic and abiotic variables in benthic estuarine ecosystem. This contemporaneous community will be the backdrop for understanding the response of autochthonous community to increasing anthropogenic stress.
Resumo:
The present work deals with the An integrated study on the hydrogeology of Bharathapuzha river basin ,south west coast of india. To study the spatial and temporal behaviour of the groundwater system of the Bharathapuzha river basin.To discover the sub-surface parameter by ground resistivity surveys.T o determine the groundwater quality of the Bharathapuzha river basin for the different seasons {pre monsoon and post monsoon with reference to the domestic and irrigational water quality standards.Present study will provide a good database on the hydrogeological aspects within the river basin.The study area covers l7 block Panchayats. Of these, Chitoor block is ‘over exploited’, Kollengode, Trithala, and Palakkad are ‘critical’ in category and Kuttippuram and Sreekrishnapuram blocks are ‘semi critical’ in terms of groundwater development.Comparison of Geomorphology map with drainage map shows that the geomorphology has a clear control on the drainage net work of the basin. The structural hill area shows a highest drainage network, where as pediment shows lowest drainage network.There are many discontinuous lineament in the Bharathapuzha river basin which can be connected by a straight line.Ground water flow directions are generally towards the western portions of the study area. From the northern region Water flows towards the central and also water from the eastern and southern side confluences at the centre and move towards western side of the basin.The positive correlation of transmissivity and storativity values show good aquifer conditions exists in the present study area .
Resumo:
The influence of salinity on phytoplankton varies widely, because different species have different salinity preferences. Like marine and aquatic species, many phytoplankton species exhibit tolerance to certain salinity, beyond which, it can inhibit their growth. Light is the most important factor that influences phytoplankton growth. In aquatic environments (lakes, sea or estuary) the light incident on the surface is rapidly reduced exponentially with depth (Krik, 1994). In estuaries, the major factor influencing the light availability is the suspended particulate matter, which attenuates and scatters the light. The light changes with time of the day and the season, affecting the amount of light penetrating the water column. Similarly, biological factor like copepod grazing is a major factor influencing the standing crop of phytoplankton. The copepod can actively graze up to 75% of the phytoplankton biomass in a tropical estuary (Tan et. al., 2004). It is in the context that the present study investigates the salinity, light (physical factors) and copepod grazing (biological factor) phytoplankton as the factors controlling phytoplankton growth and distribution
Resumo:
The present study is focused on the intensity distribution of rainfall in different classes and their contribution to the total seasonal rainfall. In addition, we studied the spatial and diurnal variation of the rainfall in the study areas. For the present study, we retrieved data from TRMM (Tropical Rain Measuring Mission) rain rate available in every 3 h temporal and 25 km spatial resolutions. Moreover, station rainfall data is used to validate the TRMM rain rate and found significant correlation between them (linear correlation coefficients are 0.96, 0.85, 0.75 and 0.63 for the stations Kota Bharu, Senai, Cameron highlands and KLIA, respectively). We selected four areas in the Peninsular Malaysia and they are south coastal, east coastal, west coastal and highland regions. Diurnal variation of frequency of rain occurrence is different for different locations. We noticed bimodal variation in the coastal areas in most of the seasons and unimodal variation in the highland/inland area. During the southwest monsoon period in the west coastal stations, there is no distinct diurnal variation. The distribution of different intensity classes during different seasons are explained in detail in the results
Resumo:
An Overview of known spatial clustering algorithms The space of interest can be the two-dimensional abstraction of the surface of the earth or a man-made space like the layout of a VLSI design, a volume containing a model of the human brain, or another 3d-space representing the arrangement of chains of protein molecules. The data consists of geometric information and can be either discrete or continuous. The explicit location and extension of spatial objects define implicit relations of spatial neighborhood (such as topological, distance and direction relations) which are used by spatial data mining algorithms. Therefore, spatial data mining algorithms are required for spatial characterization and spatial trend analysis. Spatial data mining or knowledge discovery in spatial databases differs from regular data mining in analogous with the differences between non-spatial data and spatial data. The attributes of a spatial object stored in a database may be affected by the attributes of the spatial neighbors of that object. In addition, spatial location, and implicit information about the location of an object, may be exactly the information that can be extracted through spatial data mining
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining
Resumo:
In this paper, moving flock patterns are mined from spatio- temporal datasets by incorporating a clustering algorithm. A flock is defined as the set of data that move together for a certain continuous amount of time. Finding out moving flock patterns using clustering algorithms is a potential method to find out frequent patterns of movement in large trajectory datasets. In this approach, SPatial clusteRing algoRithm thrOugh sWarm intelligence (SPARROW) is the clustering algorithm used. The advantage of using SPARROW algorithm is that it can effectively discover clusters of widely varying sizes and shapes from large databases. Variations of the proposed method are addressed and also the experimental results show that the problem of scalability and duplicate pattern formation is addressed. This method also reduces the number of patterns produced
Resumo:
This paper presents the first detailed investigation on the residual levels of organochlorine insecticide (OCI) concentrations in the Cochin estuarine sediment. It aims in elucidate their distribution and ecological impact on the aquatic system. Concentrations of persistent organochlorine compound (OC) were determined for 17 surface sediment samples which were collected from specific sites of Cochin Estuarine System (CES) over a period of November 2009 and November 2011. The contaminant levels in the CES were compared with other worldwide ecosystems. The sites bearing high concentration of organochlorine compounds are well associated with the complexities and low energy environment. Evaluation of ecotoxicological factors suggests that adverse biological effects are expected in certain areas of CES
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.
Resumo:
This is an empirical study with theoretical interpretation and elaboration simultaneously on the migration process and the related spatial development in contemporary China. In so doing, there is always a combination of series of studies of the modernization of the migrants themselves with accumulation of forms of capital and changes of lebenswelt (life world) as well as the regions of their origins by the effective use of the gained resources from outgoing migration and remigration. With great efforts made to put the issues together for analysis, the author has taken three approaches to the study based on the political and economic institutional arrangements, the field work data and the elaboration of respective findings. First, as the analytical parts of the institutional changes, which have gone through the whole research, many of the policies from state level to townships involved in the migration, remigration and spatial development have been interpreted with Chinese political and cultural insight. The making of these, as the means of understanding the contexts of macro level and micro level cases is served as key linkages between scholarly imagination and social reality. Indeed most of the discussions made to explain the phenomena such as the sudden upsurge of migration flows, the emergence of three generations, the strong and weak trends of remigration as well as the related spatial development planning, etc are mainly due to the domination, at least the impact of governments decision-making in spite of growing market functioning in often operative manners. Secondly, case studies of the effects of migration and remigration are carried out between the years of 1995 and 2005 in the costal urban regions as designations and the interior rural regions as origins. Conducted mainly by the author, the cases drawn in the research focus on the process of migration with an accumulation of forms of capital away from home and the effective use of the resources flowing back to home areas. As a result, ways of accumulation and utilization of the economic, social and cultural capital are described and interpreted in terms of the development and modernization of both the migrants themselves and the regions where they come out from or move to in the future. Thirdly, in accordance with the findings generated from the cases, the author proposes in the final chapter an important argumentation as conclusion that the duel social-economic structure will inevitably be broken up and reformulated with flows of migrants and forms of capital they possess as types of future spatial development that will be put into practice. With scenarios and all the other conclusions worked out in the end, the research concludes that the pluralistic spatial development in the condition of constant space flows between regions can be a decisive line of thinking in the process of urbanization, industrialization and modernization in the long run in the future. Since this is an exploratory study of the past and present, the author has left some space open for academic debates and put forward suggestions on the inclusion of future research before implementing policies necessary for migration associated spatial practice and development.
Resumo:
Andrographis paniculata, commonly known as Kalmegh, is used both in Ayurvedic and Unani system of medicines because of its immunological, antibacterial and hepatoprotective properties. This study was carried out to investigate the influence of four harvesting times (120,135,150 days after planting and at seed maturity) and four planting distances (30×15, 30×10, 20×15 and 20×10 cm) on growth, dry herbage biomass, seed yield and quality traits of Andrographis paniculata at CCS Haryana Agricultural University, Hisar, India in the two years 2005 and 2006. The treatments were laid out in a split plot design with three replications. The maximum values for dry herbage biomass yield (5.14 t ha^(-1)), net returns (760.00 EUR ha^(-1)), B:C ratio (2.59), andrographolide content (2.63%) and total yield (135.00 kg ha^(-1)) were detected 135 days after planting with an optimum planting distance of 30×15 cm. However, the maximum iron content was estimated 120 days after planting. The highest dry herbage (4.58 t ha^(-1)) and maximum seed yield (19.7 kg ha^(-1)) were registered at plants that were lined out with a distance of 20×10 cm.