985 resultados para Generalized functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuum distorted-wave eikonal-initial-state (CDW-EIS) theory of Crothers and McCann (Crothers DSF and McCann JF, 1983 J. Phys. B: At. Mol. Opt. Phys. 16 3229 ) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS, to incorporate the azimuthal ange dependence into the final-state wavefunction. This is accomplished by the analytic continuation of hydrogenic-like wavefunctions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 ke V u^{-1}, the total CDW-EIS ionization cross section falls off, with decreasing energy, too quickly in comparison with experimental data by Crothers and McCann. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment, by including contributions from non-zero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to evaluating all multiple complex roots of analytical function f(z) confined to the specified rectangular domain of complex plane has been developed and implemented in Fortran code. Generally f (z), despite being holomorphic function, does not have a closed analytical form thereby inhibiting explicit evaluation of its derivatives. The latter constraint poses a major challenge to implementation of the robust numerical algorithm. This work is at the instrumental level and provides an enabling tool for solving a broad class of eigenvalue problems and polynomial approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of alternative combination rules in DS theory when evidence is in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. These studies have mainly focused on investigating which alternative would be appropriate for which conflicting situation, under the assumption that a conflict is identified. The issue of detection (or identification) of conflict among evidence has been ignored. In this paper, we formally define when two basic belief assignments are in conflict. This definition deploys quantitative measures of both the mass of the combined belief assigned to the emptyset before normalization and the distance between betting commitments of beliefs.We argue that only when both measures are high, it is safe to say the evidence is in conflict. This definition can be served as a prerequisite for selecting appropriate combination rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.