900 resultados para Generalized Gaussian-noise
Resumo:
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.
Resumo:
We study and compare the information loss of a large class of Gaussian bipartite systems. It includes the usual Caldeira-Leggett-type model as well as Anosov models ( parametric oscillators, the inverted oscillator environment, etc), which exhibit instability, one of the most important characteristics of chaotic systems. We establish a rigorous connection between the quantum Lyapunov exponents and coherence loss, and show that in the case of unstable environments coherence loss is completely determined by the upper quantum Lyapunov exponent, a behavior which is more universal than that of the Caldeira-Leggett-type model.
Resumo:
We present a large-scale systematics of charge densities, excitation energies and deformation parameters For hundreds of heavy nuclei The systematics is based on a generalized rotation vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation. (C) 2010 Elsevier B V All rights reserved.
Resumo:
We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.
Resumo:
The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the generalized second law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that the accretion process is possible, and that the condition guaranteeing the positiveness of the phantom fluid entropy coincides with the one required by the generalized second law. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Low-frequency noise in an electrolyte-insulator- semiconductor (EIS) structure functionalized with multilayers of polyamidoamine (PAMAM) dendrimer and single-walled carbon nanotubes (SWNT) is studied. The noise spectral density exhibits 1/f(gamma) dependence with the power factor of gamma approximate to 0.8 and gamma = 0.8-1.8 for the bare and functionalized EIS sensor, respectively. The gate-voltage noise spectral density is practically independent of the pH value of the solution and increases with increasing gate voltage or gate-leakage current. It has been revealed that functionalization of an EIS structure with a PAMAM/SWNTs multilayer leads to an essential reduction of the 1/f noise. To interpret the noise behavior in bare and functionalized EIS devices, a gate-current noise model for capacitive EIS structures based on an equivalent flatband-voltage fluctuation concept has been developed.
Resumo:
We apply the master equation technique to calculate shot noise in a system composed of single level quantum dot attached to a normal metal lead and to a ferromagnetic lead (NM-QD-FM). It is known that this system operates as a spin-diode, giving unpolarized currents for forward bias and polarized current for reverse bias. This effect is observed when only one electron can tunnel at a time through the dot, due to the strong intradot Coulomb interaction. We find that the shot noise also presents a signature of this spin-diode effect, with a super-Poissonian shot noise for forward and a sub-Poissonian shot noise for reverse bias voltages. The shot noise thus can provide further experimental evidence of the spin-rectification in the NM-QD-FM geometry.
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
We consider consider the problem of dichotomizing a continuous covariate when performing a regression analysis based on a generalized estimation approach. The problem involves estimation of the cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the continuous covariate has a significant impact on the outcome. Due to the multiple testing used to find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve the type-I error rates. We illustrate the techniques on one data set of patients given unrelated hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to patient affects the outcome of the transplant and what is the smallest cell dose which is needed for good outcomes. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
The Birnbaum-Saunders (BS) model is a positively skewed statistical distribution that has received great attention in recent decades. A generalized version of this model was derived based on symmetrical distributions in the real line named the generalized BS (GBS) distribution. The R package named gbs was developed to analyze data from GBS models. This package contains probabilistic and reliability indicators and random number generators from GBS distributions. Parameter estimates for censored and uncensored data can also be obtained by means of likelihood methods from the gbs package. Goodness-of-fit and diagnostic methods were also implemented in this package in order to check the suitability of the GBS models. in this article, the capabilities and features of the gbs package are illustrated by using simulated and real data sets. Shape and reliability analyses for GBS models are presented. A simulation study for evaluating the quality and sensitivity of the estimation method developed in the package is provided and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present an extension of the generalized Birnbaum-Saunders distribution family introduced in [Diaz-Garcia, J.A., Leiva-Sanchez, V., 2005. A new family of life distributions based on the contoured elliptically distributions. Journal of Statistical Planning and Inference 128 (2), 445-457] with a view to make it even more flexible in terms of its kurtosis coefficient. Properties involving moments and asymmetry and kurtosis indexes are studied for some special members of this family such as the slash Birnbaum-Saunders and slash-t Birnbaum-Saunders. Simulation studies for some particular cases and a real data analysis are also reported, illustrating the usefulness of the extension considered. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The generalized Birnbaum-Saunders (GBS) distribution is a new class of positively skewed models with lighter and heavier tails than the traditional Birnbaum-Saunders (BS) distribution, which is largely applied to study lifetimes. However, the theoretical argument and the interesting properties of the GBS model have made its application possible beyond the lifetime analysis. The aim of this paper is to present the GBS distribution as a useful model for describing pollution data and deriving its positive and negative moments. Based on these moments, we develop estimation and goodness-of-fit methods. Also, some properties of the proposed estimators useful for developing asymptotic inference are presented. Finally, an application with real data from Environmental Sciences is given to illustrate the methodology developed. This example shows that the empirical fit of the GBS distribution to the data is very good. Thus, the GBS model is appropriate for describing air pollutant concentration data, which produces better results than the lognormal model when the administrative target is determined for abating air pollution. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Let G be any of the (binary) icosahedral, generalized octahedral (tetrahedral) groups or their quotients by the center. We calculate the automorphism group Aut(G).