990 resultados para GUNSHOT RESIDUE
Resumo:
The aim of this study was to assess the efficacy of S-metolachlor applied in pre-emergence conditions for the control of Brachiaria decumbens, Digitaria horizontalis, and Panicum maximum in sugar cane mechanically harvested without previous burning of the crop (green harvest) with the crop residue either left or not on the soil surface. The experiments were established in the field according to a randomized complete block design with four repetitions in a 7 x 2 split-plot scheme. In the plots, five herbicide treatments were studied (S-metolachlor at 1.44, 1.92, and 2.40 kg ha-1, clomazone at 1.20 kg ha-1, and isoxaflutole at 0.188 kg ha-1), and two control treatments with no herbicide application. In the subplots, the presence or absence of sugar cane crop residue on the soil surface was evaluated. S-metolachlor efficacy was not hampered by either 14 or 20 t ha-1 of sugar cane crop residue on the soil surface. When sugar cane crop residue was covering the soil surface, S-metolachlor at a rate of 1.44 kg ha-1 resulted in weed control similar at their larger rates, where as without the presence of crop residue, S-metolachlor controlled B. decumbens, D. horizontalis, and P. maximum at the rates of 1.92, 1.44, and 1.92 kg ha-1, respectively. The herbicides clomazone and isoxaflutole were effective for the studied species, independently of the crop residue covering the soil surface. S-metolachlor caused no visible injury symptoms to the sugar cane plant. Clomazone and isoxaflutole caused visible injuries to the sugar cane plant. None of the herbicides negatively affected the number of viable culms m² or the culm height and diameter.
Resumo:
A laboratory study was conducted to investigate the allelopathic effect of aqueous extracts of plant parts of Alternanthera philoxeroides and A. sessilis and soil incorporated residues on germination and seedling growth of rice (Oryza sativa). Aqueous extracts prepared from different plant parts of Alternanthera species delayed rice germination. Alternanthera philoxeroides and A. sessilis inhibited rice germination by 9-100% and 4-49%, respectively. Germination of rice seeds was reduced with increasing concentration of aqueous leaf extracts of both weed species. Early seedling growth (root and shoot lengths) and seedling vigor index were significantly reduced by 5% aqueous leaf extract compared with distilled water treated control. Germination, root and shoot lengths, root and shoot dry weights and seedling vigor index of rice were drastically reduced by 3 and 4% in residue infested soil compared with residue free soil. The inhibitory effect of A. philoxeroides in terms of germination and seedling growth of rice was greater than that of A. sessilis. Five percent aqueous leaf extract and 4% residue infested soil of A. philoxeroides caused complete failure of rice seed germination. Alternanthera philoxeroides contained water soluble phenolics, namely 4 hydroxy-3-methoxy benzoic acid (16.19 mg L-1) and m-coumaric acid (1.48 mg L-1), whereas Alternanthera sessilis was rich in chlorogenic acid (17.85 mg L-1), gallic acid (11.03 mg L-1) and vanillic acid (9.88 mg L-1). The study indicates that the allelopathic potential of Alternanthera species may play an important role in enhancing the invasiveness of these species and may suppress rice plants in the vicinity.
Resumo:
To investigate the allelopathic effect of Marsilea minuta against the germination and seedling growths of rice (Oryza sativa) and wheat (Triticum aestivum), germination bioassays were conducted in both Petri dish and soil cultures in laboratory conditions. Rice and wheat seeds were allowed to germinate in a 1, 2, 3, 4, and 5% (w/v) aqueous extract of whole plant and 2, 4, 6, and 8% (w/w) plant residue-incorporated soils of M. minuta. In Petri dish experiments, 5% (w/v) an aqueous extract of M. mimuta showed significantly lower germination percentages (18.8% and 56.3%), root lengths (0.9 and 4.5 cm), shoot lengths (3.3 and 12.4 cm), seedling lengths (4.1 and 25.0 cm), root dry weights (1.4 and 5.6 g), shoot dry weights (1.1 and 9.0 g), seedling biomasses (2.5 and 14.6 g), and seedling vigor indices (77.4 and 957.3) in rice and wheat, respectively. In pot experiments, the M. minuta residue infested soil, with 8% concentration, produced significantly lower germination percentages (25.3 and 37.5%), root lengths (2.7 and 6.1 cm), shoot lengths (6.2 and 16.5 cm), seedling lengths (8.9 and 22.6 cm), root dry weights (2.4 and 5.5 g), shoot dry weights (4.0 and 2.8 g), seedling biomasses (6.4 and 8.3 g), and seedling vigor indices (224.1 and 855.3) in rice and wheat, respectively. The highest phytotoxic action of 5% aqueous whole plant extract of M. minuta against test crops seem to be due to the presence of two potent phenolic compounds, namely p-coumaric acid (2.91 mg L-1) and m-coumaric acid (1.59 mg L-1) as determined by HPLC analysis.
Resumo:
ABSTRACT The combination of crop residues or crop extracts is often more advantageous in controlling weeds, than the application of each residue or extract singly. This suggests that in intercropping with maize, the combination of tree species can be more advantageous than species isolated in weed control. The objective of this study was to evaluate the effects of intercropping with a combination of leguminous on the weed growth and corn yield. A randomized-block design with split plots (cultivars in plots) and five replicates was established. The cultivars BR 205 and AG 1041 were subject to the following treatments: two weedings (A), intercropping with sabiá (B), gliricidia (C), gliricidia + sabiá (D) and no weeding (E). In the B and C, 30 viable seeds m-2 of the leguminous were sown. In the D, 15 seeds of each species were sown m-2. The legumes were sown by random casting during corn planting. The sequence of the best treatments in reducing the growth of weeds is A > B = C = D = E. The sequence of the best treatments when are considered the yields of baby corn, green corn and grain is A > B > C > D > E. The cultivars do not differ in regards to the reduction in weed growth. In terms of corn yield cultivar BR 205 is the best.
Resumo:
The allelopathic effect studied in many cultures has currently generated great expectations that displayed a natural and environmentally friendly tool for weed management using bioherbicides. The objective of this work was to assess allelopathic influence of residues of S. trilobata on the germination and growth of weeds, as well as their relation with some crops and effects on soil properties. Results show that residues from S. trilobata have inhibited the germination of weeds (31.6 - 72%), increasingly with the applied dose. All residue doses of this specie have inhibited dicotyledonous germination, but only maximum concentration has affected monocotyledons. The residues did not affect onion germination, but stimulated it in radish and tomato, while the dose applied at 50% produced tomato stimulation and inhibition of cabbage. The effects of residues on hypocotyl growth in different crops showed changes in species response. For onion, the three doses had negative effects on the growth of hypocotyl, while tomato was stimulated. For radish, the growth was hindered by any dose applied, and were only different (50 and 100%) compared to control. For cabbage, only hypocotyl length was stimulated, when maximum dose (100%) was applied. For the radicle growth, in onion and radish no differences were found compared to control. While the tomato radicle growth was inhibited, in cabbage, all doses encouraged the elongation of the radicle. The dry mass of weed was affected by increased dose of residue (0.49 - 8.8 g m-2), however the soil microflora was stimulated, while the population of Azotobacter spp. was not affect. Some soil properties were affected, the level of organic material, Na+ and electrical conductivity were increased, while pH (H2O) decreased a bit, however it remained basic.
Resumo:
The objective of this work was to evaluate the initial growth and the physiological characteristics of eucalypt submitted to different managements of signalgrass. The experiment was conducted in a protected environment, using a randomized blocks design with five repetitions. The treatments were arranged in a (5 x 2) + 1 factorial design, and the first factor corresponded to the types of weed management (no control; chemical control keeping the signalgrass shoot on the soil; chemical control with removal of the signalgrass shoot; mechanical control keeping the signalgrass shoot on the soil, and mechanical control with removal of the signalgrass shoot); the second factor corresponded to the two weeds species (U. brizantha and U. decumbens) and a control relative to the eucalypt in monoculture. The eucalypt growth was not affected by the presence of the Urochloa species until 50 days after treatments (DAT). However, the coexistence of these species with eucalypt for 107 DAT reduced the collar diameter, total dry matter, and the leaf area, but did not alter the characteristics related to photosynthesis and transpiration. The control method adopted, with removal or maintenance of the signalgrass shoot, regardless of species, did not change the initial eucalypt growth. It can be concluded that the coexistence of eucalypt with Urochloa decumbens or Urochloa brizantha for 105 days reduces the eucalypt growth. However, the use of chemical or mechanical control, with or without removal of signalgrass residue, were effective methods to prevent interference of these weeds.
Resumo:
The AQUAREL project studied the availability and optional utilization methods for fish processing side streams and other aquatic biomaterial in the Republic of Karelia. Additionally processing aquatic biomaterial with manure and sewage sludge was studied. Based on the results, the most feasible option today is to process fish side streams to fish oil and dewatered oil-free residue and to use them for fish or animal feed production. However, it is necessary to highlight, that changes in e.g. economic environment, energy prices and demand may require re-evaluating the results and conclusions made in the project. Producing fish oil from fish processing side streams is an easy and relatively simple production process generating a valuable end product. The functionality of the process was confirmed in a pilot conducted in the project. The oil and solids are separated from the heated fish waste based on gravity. The fish oil separating on top of the separator unit is removed. Fish oil can as such be utilized for heating purposes, fish meal or animal feed production, but it can also be further processed to biodiesel. However, due to currently moderate energy prices in Russia, biodiesel production is not economically profitable. Even if the fish oil production process is not complicated, the operative management of small-scale fish oil production unit requires dedicated resources and separate facilities especially to meet hygiene requirements. Managing the side streams is not a core business for fish farmers. Efficient and economically profitable fish oil production requires a centralized production unit with bigger processing capacity. One fish processing unit needs to be designed to manage side streams collected from several fish farms. The optimum location for the processing unit is in the middle of the fish farms. Based on the transportation cost analysis in the Republic of Karelia, it is not economically efficient to transport bio-wastes for more than 100 km since the transportation costs start increasing substantially. Another issue to be considered is that collection of side streams, including the dead fish, from the fish farms should be organized on a daily basis in order to eliminate the need for storing the side streams at the farms. Based on AQUAREL project studies there are different public funding sources available for supporting and enabling profitable and environmentally sustainable utilization, research or development of fish processing side streams and other aquatic biomaterial. Different funding programmes can be utilized by companies, research organizations, authorities and non-governmental organizations.
Resumo:
Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using a-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme.
Resumo:
The protease ZapA, secreted by Proteus mirabilis, has been considered to be a virulence factor of this opportunistic bacterium. The control of its expression requires the use of an appropriate methodology, which until now has not been developed. The present study focused on the replacement of azocasein with fluorogenic substrates, and on the definition of enzyme specificity. Eight fluorogenic substrates were tested, and the peptide Abz-Ala-Phe-Arg-Ser-Ala-Ala-Gln-EDDnp was found to be the most convenient for use as an operational substrate for ZapA. A single peptide bond (Arg-Ser) was cleaved with a Km of 4.6 µM, a k cat of 1.73 s-1, and a catalytic efficiency of 376 (mM s)-1. Another good substrate for ZapA was peptide 6 (Abz-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Gln-EDDnp) which was cleaved at a single bond (Phe-Ser) with a Km of 13.6 µM, a k cat of 3.96 s-1 and a catalytic efficiency of 291 (mM s)-1. The properties of the amino acids flanking the scissile bonds were also evaluated, and no clear requirement for the amino acid residue at P1 was found, although the enzyme seems to have a preference for a hydrophobic residue at P2.
Resumo:
The interaction of the product of H2O2 and (PhSe)2 with delta-aminolevulinate dehydratase (delta-ALA-D) from mammals and plants was investigated. (PhSe)2 inhibited rat hepatic delta-ALA-D with an IC50 of 10 µM but not the enzyme from cucumber leaves. The reaction of (PhSe)2 with H2O2 for 1 h increased the inhibitory potency of the original compound and the IC50 for animal delta-ALA-D inhibition was decreased from 10 to 2 µM. delta-ALA-D from cucumber leaves was also inhibited by the products of reaction of (PhSe)2 with H2O2 with an IC50 of 4 µM. The major product of reaction of (PhSe)2 with H2O2 was identified as seleninic acid and produced an intermediate with a lambdamax at 265 nm after reaction with t-BuSH. These results suggest that the interaction of (PhSe)2 with mammal delta-ALA-D requires the presence of cysteinyl residues in close proximity. Two cysteine residues in spatial proximity have been recently described for the mammalian enzyme. Analysis of the primary structure of plant delta-ALA-D did not reveal an analogous site. In contrast to (PhSe)2, seleninic acid, as a result of the higher electrophilic nature of its selenium atom, may react with additional cysteinyl residue(s) in mammalian delta-ALA-D and also with cysteinyl residues from cucumber leaves located at a site distinct from that found at the B and A sites in mammals. Although the interaction of organochalcogens with H2O2 may have some antioxidant properties, the formation of seleninic acid as a product of this reaction may increase the toxicity of organic chalcogens such as (PhSe)2.
Resumo:
Apoptosis and necrosis are two distinct forms of cell death that can occur in response to different agents and stress conditions. In order to verify if the oxidative stress induced by dietary selenium and vitamin E deficiencies can lead muscle cells to apoptosis, one-day-old chicks were reared using diets differing in their vitamin E (0 or 10 IU/kg) and selenium (0 or 0.15 ppm) supplementation. Chick skeletal muscle tissue was obtained from 28-day-old animals and used to verify apoptosis occurrence based on caspase activity detection and DNA fragmentation. Antioxidant deficiency significantly increased caspase-like activity assessed by the hydrolysis of fluorogenic peptide substrates (Abz-peptidyl-EDDnp) at lambdaexc = 320 nm and lambdaem = 420 nm. Proteolytic activation was not accompanied by typical internucleosomal DNA fragmentation detected by field inversion gel electrophoresis. Although the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-fmk) (0 to 80 muM) did not block caspase-like activity when preincubated for 30 min with muscle homogenates, the hydrolyzed substrates presented the same cleavage profile in HPLC (at the aspartic acid residue) when incubated with the purified recombinant enzyme caspase-3. These data indicate that oxidative stress causes caspase-like activation in muscle cells and suggest that cell death associated with exudative diathesis (dietary deficiency of selenium and vitamin E) can follow the apoptotic pathway.
Resumo:
The binding of chlorpromazine (CPZ) and hemin to bovine serum albumin was studied by the fluorescence quenching technique. CPZ is a widely used anti-psychotic drug that interacts with blood components, influences bioavailability, and affects function of several biomolecules. Hemin is an important ferric residue of hemoglobin that binds within the hydrophobic region of albumin with high specificity. Quenching of the intrinsic fluorescence of bovine serum albumin (BSA) was observed by selectively exciting tryptophan residues at 290 nm. Emission spectra were recorded in the range from 300 to 450 nm for each quencher addition. Stern-Volmer graphs were plotted, and the quenching constant estimated for BSA solution titrated with hemin at 25ºC was 1.44 (± 0.05) x 10(5) M-1. Results showed that bovine albumin tryptophans are not equally accessible to CPZ, in agreement with the idea that polar or charged quenchers have more affinity for amino acid residues on the outer wall of the protein. Hemin added to albumin solution at a molar ratio of 1:1 quenched about 25% of their fluorescence. The quenching effect of CPZ on albumin-hemin solution was stronger than on pure BSA. This increase can be the result of combined conformational changes in the structure of albumin caused firstly by hemin and then by CPZ. Our results suggest that the primary binding site for hemin on bovine albumin may be located asymmetrically between the two tryptophans along the sequence formed by subdomains IB and IIA, closer to tryptophan residue 212.
Resumo:
Adrenomedullin, a 52-amino acid residue peptide, has numerous biological actions which are of potential importance to cardiovascular homeostasis, growth and development of cardiovascular tissues and bone, prevention of infection, and regulation of body fluid and electrolyte balance. Studies in man using intravenous infusion of the peptide have demonstrated that, at plasma levels detected after myocardial infarction or in heart failure, adrenomedullin reduces arterial pressure, increases heart rate and cardiac output, and activates the sympathetic and renin-angiotensin systems but suppresses aldosterone. The thresholds for these responses differ, being lower under some experimental circumstances for arterial pressure than for the other biological effects. Adrenomedullin administration inhibits the pressor and aldosterone-stimulating action of angiotensin II in man. By contrast, the pressor effect of norepinephrine is little altered by concomitant adrenomedullin administration. Although in the absence of a safe, specific antagonist of the actions of endogenous adrenomedullin it is difficult to be certain about the physiological and pathophysiological importance of this peptide in man, current evidence suggests that it serves to protect against cardiovascular overload and injury. Hope has been expressed that adrenomedullin or an agonist specific for adrenomedullin receptors might find a place in the treatment of cardiovascular disorders.
Resumo:
Lactococcus lactis, the model lactic acid bacterium, is a good candidate for heterologous protein production in both foodstuffs and the digestive tract. We attempted to produce Streptomyces tendae antifungal protein 1 (Afp1) in L. lactis with the objective of constructing a strain able to limit fungal growth. Since Afp1 activity requires disulfide bond (DSB) formation and since intracellular redox conditions are reportedly unfavorable for DSB formation in prokaryotes, Afp1 was produced as a secreted form. An inducible expression-secretion system was used to drive Afp1 secretion by L. lactis; Afp1 was fused or not with LEISSTCDA, a synthetic propeptide (LEISS) that has been described to be a secretion enhancer. Production of Afp1 alone was not achieved, but production of LEISS-Afp1 was confirmed by Western blot and immunodetection with anti-Afp1 antibodies. This protein (molecular mass: 9.8 kDa) is the smallest non-bacteriocin heterologous protein ever reported to be secreted in L. lactis via the Sec-dependent pathway. However, no anti-fungal activity was detected, even in concentrated samples of induced supernatant. This could be due to a too low secretion yield of Afp1 in L. lactis, to the absence of DSB formation, or to an improper DSB formation involving the additional cysteine residue included in LEISS propeptide. This raises questions about size limits, conformation problems, and protein secretion yields in L. lactis.
Resumo:
Inorganic pyrophosphatases (PPases) are enzymes that hydrolyze pyrophosphate (PPi)which is produced as a byproduct in many important growth related processes e.g. in the biosynthesis of DNA, proteins and lipids. PPases can be either soluble or membranebound. Membrane-bound PPases (mPPases) are ion transporters that couple the energy released during PPi hydrolysis to Na+ or H+ transport. When I started the project, only three Na+-transporting mPPases were known to exist. In this study, I aimed to confirm if Na+-transport is a common function of mPPases. Furthermore, the amino acid residues responsible for determining the transporter specificity were unknown. I constructed a phylogenetic tree for mPPases and selected the representative bacterial and archaeal mPPases to be investigated. I expressed different prokaryotic mPPases in Escherichia coli, isolated these as inverted membrane vesicles and characterized their functions. In the first project I identified four new Na+-PPases, two K+-dependent H+-PPases and one K+-independent mPPase. The residues determining the transporter specificity were identified by site-directed mutagenesis. I showed that the conserved glutamate residues are important for specificity, though are not the only residues that influence it. This research clarified the ion transport specificities throughout the mPPase phylogenetic tree, and revealed that Na+ transport is a widespread function of mPPases. In addition, it became clear that the transporter specificity can be predicted from the amino acid sequence in combination with a phylogenetic analysis. In the second project, I identified a novel class of mPPases, which is capable of transporting both Na+ and H+ ions and is mainly found in bacteria of the human gastrointestinal tract. The physiological role of these novel enzymes may be to help the bacteria survive in the demanding conditions of the host. In the third project, I characterized the Chlorobium limicola Na+-PPase and found that this and related mPPases are able to transport H+ ions at subphysiological Na+ concentrations. In addition, the H+-transport activity was shown to be a common function of all studied Na+-PPases at low Na+ concentrations. I observed that mutating gate-lysine to asparagine eliminated the H+ but not the Na+ ion transport function, indicating the important role of the residue in the transport of H+. In the fourth project, I characterized the unknown and evolutionary divergent mPPase clade of the phylogenetic tree. The enzymes belonging to this clade are able to transport H+ ions and, based on their sequence, were expected to be K+- and Na+-independent. The sequences of membrane-bound PPase are usually highly conserved, but the enzymes belonging to this clade are more divergent and usually contain 100−150 extra amino acid residues compared to other known mPPases. Despite the vast sequence differences, these mPPases have the full set of important residues and, surprisingly, are regulated by Na+ and K+ ions. These enzymes are mainly of bacterial origin.