968 resultados para GLUTAMATERGIC SYNAPTIC-TRANSMISSION
Resumo:
In this paper, analysis and synthesis approach for two new variants within the Class-EF power amplifier (PA) family is elaborated. These amplifiers are classified here as Class-E3 F2 and transmission-line (TL) Class-E3 F 2. The proposed circuits offer means to alleviate some of the major issues faced by existing topologies such as substantial power losses due to the parasitic resistance of the large inductor in the Class-EF load network and deviation from ideal Class-EF operation due to the effect of device output inductance at high frequencies. Both lumped-element and transmission-line load networks for the Class-E 3 F PA are described. The load networks of the Class-E3 F and TL Class-E 3 F2amplifier topologies developed in this paper simultaneously satisfy the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Optimum circuit component values are analytically derived and validated by harmonic balance simulations. Trade-offs between circuit figures of merit and component values with some practical limitations being considered are discussed. © 2010 IEEE.
Resumo:
Perfect state transfer is possible in modulated spin chains [Phys. Rev. Lett. 92, 187902 (2004)], imperfections, however, are likely to corrupt the state transfer. We study the robustness of this quantum communication protocol in the presence of disorder both in the exchange couplings between the spins and in the local magnetic field. The degradation of the fidelity can be suitably expressed, as a function of the level of imperfection and the length of the chain, in a scaling form. In addition the time signal of fidelity becomes fractal. We further characterize the state transfer by analyzing the spectral properties of the Hamiltonian of the spin chain.
Resumo:
Experiments are reported which show that currents of low energy ("cold") electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, indicating negligible apparent trapping. By contrast, both porous amorphous ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice and the phenomenon of temperature-dependent trapping.
Resumo:
Introduction Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. The present study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Methods Bladders from SCI (T8/9 transection) and sham-operated rats five-weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Results Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. Conclusions IC populations in bladder wall were decreased five weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.
Resumo:
A novel Class-E power amplifier (PA) topology with transmission-line load network is presented in this brief. When compared with the classic Class-E topology, the new circuit can increase the maximum operating frequency up to 50% higher without trading the other Class-E figures of merit. Neither quarterwave line/massive radio-frequency choke for collector/drain biasing nor additional fundamental-frequency output matching circuit are needed in the proposed PA, thus resulting in a compact design. Closed-form formulations are derived and verified by simulations with practical design limitations carefully taken into consideration and good agreement achieved.
Resumo:
A vaginally-worn temperature telemeter may be used by women to chart their basal body temperature for ovulation detection. The telemeter uses a temperature to pulse width converter to key a Colpitts oscillator which is controlled in frequency by a 418 MHz SAW resonator. The circuit’s tank inductor acts as a compact, multi-turn loop antenna with a radiated power in isolation of around 1 uW. The transmission characteristics of the system are affected by the proximity of the human body, which acts as an electrically-large lossy dielectric. The RF link-budget must allow for the reduction in total emitted power, directional body-induced fading, and polarization effects. The polar power patterns of the telemeter were measured for both isolated and in-situ cases, using horizontal and vertical polarization. The power patterns were numerically integrated to determine relative emitted power, and a reference dipole used to determine the emitted power for the isolated device. In isolation the telemeter radiation is vertically polarized and isotropic in nature. With the telemeter in-situ, total body absorption was found to be over 20 dB, with directional fades of up to 40 dB; there was extensive cross-polarization, with up to 60% of radiated power horizontally polarized. With limited radiated power and directional fading, the operating range for the telemeter is limited to single room operation (less than 10m). The majority of RF radiation is absorbed by the body, but the radiation hazard is negligible due to the low power level of the device. The high level of cross-polarization suggests that either horizontal or vertically polarized base-station antennas may be used.
Resumo:
Deformed wing virus (DWV) represents an ideal model to study the interaction between mode of transmission and virulence in honey bees since it exhibits both horizontal and vertical transmissions. However, it is not yet clear if venereal-vertical transmission represents a regular mode of transmission for this virus in natural honey bee populations. Here, we provide clear evidence for the occurrence of high DWV titres in the endophallus of sexually mature drones collected from drone congregation areas (DCAs). Furthermore, the endophallus DWV titres of drones collected at their maternal hives were no different from drones collected at nearby DCAs, suggesting that high-titre DWV infection of the endophallus does not hinder the ability of drones to reach the mating area. The results are discussed within the context of the dispersal of DWV between colonies and the definition of DWV virulence with respect to the transmission route and the types of tissues infected.