967 resultados para GERCINO SHEAR ZONE
Resumo:
The role of several environmental factors on the breeding and hatching of fish has been studied by many earlier investigators. Perfection in the hypophysation technique has helped to some extent in by-passing the environmental variables such as temperature, light and rain. With the use of a modern fish hatchery, it is possible to attain maximum success in breeding and hatching, even without rains; reference is given to studies carried out regarding the role of rainfall in the breeding of Labeo rohita, Cirrhinus mrigala, Catla catla.
Resumo:
Vast barren lands are lying vacant in the semi-arid zone of India, which can effectively be utilised for fish farming. Experiments conducted in semi-arid conditions at Damdama indicated that it is possible to breed Indian major carps and common carp under controlled conditions of modern carps hatchery CIFE D-80 without depending on rain.
Resumo:
To assess the biodiversity of macro benthos in the changing environment along the coast of Mumbai, the intertidal zone of Versova was identified. The water quality in this intertidal region was poor with low pH, salinity and dissolved oxygen, and high nitrite, nitrate, phosphate and ammonia. The substratum was sandy with 1.29% organic matter in it. Mean faunal density of 2257 no./m² was recorded during the study which was mainly contributed by polychaetes (83.5%) followed by amphipods (14.5%), while other groups represented were isopods, crabs, hermit crabs, unidentified decapods, pelecypods and gastropods. Average biomass of 34.83 g/m² (93.7%) was contributed by polychaetes. Shannon and Wiener Index (0.4107) indicated heavy pollution in the intertidal area of Versova.
Resumo:
A model of lubricated cold strip rolling (1, 2) is extended to the thin foil regime. The model considers the evolution of asperity geometry and lubricant pressure through the bite, treating the strip using a conventional slab model. The elastic deflections of the rolls are coupled into the problem using an elastic finite element model. Friction between the roll and the asperities on the strip is modelled using the Coulomb and Tresca friction factor approaches. The shear stress in the Coulomb friction model is limited to the shear yield stress of the strip. A novel modification to these standard friction laws is used to mimic slipping friction in the reduction regions and sticking friction in a central neutral zone. The model is able to reproduce the sticking and slipping zones predicted by Fleck et al. (3). The variation of rolling load, lubricant film thickness and asperity contact area with rolling speed is examined, for conditions typical of rolling aluminium foil from a thickness of 50 to 25 μm. T he contact area and hence friction rises as the speed drops, leading to a large increase in rolling load. This increase is considerably more marked using Coulomb friction as compared with the friction factor approach. Forward slip increases markedly as the speed falls and a significant sticking region develops.
Resumo:
Turbulent wedges induced by a 3D surface roughness placed in a laminar boundary layer over a flat plate were visualised for the first time using both shear-sensitive and temperature-sensitive liquid crystals. The experiments were carried out at three different levels of favourable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges indicated by their associated surface shear stresses and heat transfer characteristics and hence obtain further insight about the difference in the behaviour of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of favourable pressure gradient increases. The result from the present study could have an important implication to the transition modelling of thermal boundary layers over gas turbine blades.
Resumo:
The heterogeneous nature of the subsurface and associated DNAPL morphologies often poses the greatest limitation to source zone clean-up strategies. Hence, detailed site characterisation techniques are required. The data presented in this paper has been collected from a series of laboratory 2-D tank experiments and numerical simulations of Partitioning Interwell Tracer Tests (PITT) in a wide range of aquifer conditions and DNAPL morphologies. Alternative uses of tracer breakthrough data have been developed In order to characterise the mass flux generated from the DNAPL source. By combining the laboratory and numerical data, a relationship between normalised mass flux and tracer-based average source zone DNAPL saturation has been established. Knowledge of such a relationship allows remediation targets to be identified, clean-up efficiencies to be evaluated, and increases the accuracy of any risk assessment.