948 resultados para GABA Modulators
Resumo:
Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent γ-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.
Resumo:
In polarized HepG2 cells, the sphingolipids glucosylceramide and sphingomyelin (SM), transported along the reverse transcytotic pathway, are sorted in subapical compartments (SACs), and subsequently targeted to either apical or basolateral plasma membrane domains, respectively. In the present study, evidence is provided that demonstrates that these sphingolipids constitute separate membrane domains at the luminal side of the SAC membrane. Furthermore, as revealed by the use of various modulators of membrane trafficking, such as calmodulin antagonists and dibutyryl-cAMP, it is shown that the fate of these separate sphingolipid domains is regulated by different signals, including those that govern cell polarity development. Thus under conditions that stimulate apical plasma membrane biogenesis, SM is rerouted from a SAC-to-basolateral to a SAC-to-apical pathway. The latter pathway represents the final leg in the transcytotic pathway, followed by the transcytotic pIgR–dIgA protein complex. Interestingly, this pathway is clearly different from the apical recycling pathway followed by glucosylceramide, further indicating that randomization of these pathways, which are both bound for the apical membrane, does not occur. The consequence of the potential coexistence of separate sphingolipid domains within the same compartment in terms of “raft” formation and apical targeting is discussed.
Resumo:
In adult rodents, neurons are continually generated in the subventricular zone of the forebrain, from where they migrate tangentially toward the olfactory bulb, the only known target for these neuronal precursors. Within the main olfactory bulb, they ascend radially into the granule and periglomerular cell layers, where they differentiate mainly into local interneurons. The functional consequences of this permanent generation and integration of new neurons into existing circuits are unknown. To address this question, we used neural cell adhesion molecule-deficient mice that have documented deficits in the migration of olfactory-bulb neuron precursors, leading to about 40% size reduction of this structure. Our anatomical study reveals that this reduction is restricted to the granule cell layer, a structure that contains exclusively γ-aminobutyric acid (GABA)ergic interneurons. Furthermore, mutant mice were subjected to experiments designed to examine the behavioral consequences of such anatomical alteration. We found that the specific reduction in the newly generated interneuron population resulted in an impairment of discrimination between odors. In contrast, both the detection thresholds for odors and short-term olfactory memory were unaltered, demonstrating that a critical number of bulbar granule cells is crucial only for odor discrimination but not for general olfactory functions.
Resumo:
Neuropeptides are implicated in many tumors, breast cancer (BC) included. Preprotachykinin-I (PPT-I) encodes multiple neuropeptides with pleiotropic functions such as neurotransmission, immune/hematopoietic modulation, angiogenesis, and mitogenesis. PPT-I is constitutively expressed in some tumors. In this study, we investigated a role for PPT-I and its receptors, neurokinin-1 (NK-1) and NK-2, in BC by using quantitative reverse transcription–PCR, ELISA, and in situ hybridization. Compared with normal mammary epithelial cells (n = 2) and benign breast biopsies (n = 21), BC cell lines (n = 7) and malignant breast biopsies (n = 25) showed increased expression of PPT-I and NK-1. NK-2 levels were high in normal and malignant cells. Specific NK-1 and NK-2 antagonists inhibited BC cell proliferation, suggesting autocrine and/or intercrine stimulation of BC cells by PPT-I peptides. NK-2 showed no effect on the proliferation of normal cells but mediated the proliferation of BC cells. Cytosolic extracts from malignant BC cells enhanced PPT-I translation whereas extracts from normal mammary epithelial cells caused no change. These enhancing effects may be protein-specific because a similar increase was observed for IL-6 translation and no effect was observed for IL-1α and stem cell factor. The data suggest that PPT-I peptides and their receptors may be important in BC development. Considering that PPT-I peptides are hematopoietic modulators, these results could be extended to understand early integration of BC cells in the bone marrow, a preferred site of metastasis. Molecular signaling transduced by PPT-I peptides and the mechanism that enhances translation of PPT-I mRNA could lead to innovative strategies for BC treatments and metastasis.
Resumo:
The γ-aminobutyric acid type A (GABAA) receptor is the predominant Cl− channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.
Resumo:
Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na+ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na+ permeability in target cells through changes in gene transcription, the mechanistic basis of this effect remains poorly understood. The predominant early effect of aldosterone is to increase the activity of the epithelial sodium channel (ENaC), although ENaC mRNA and protein levels do not change initially. Rather, the open probability and/or number of channels in the apical membrane are greatly increased by unknown modulators. To identify hormone-stimulated gene products that modulate ENaC activity, a subtracted cDNA library was generated from A6 cells, a stable cell line of renal distal nephron origin, and the effect of candidates on ENaC activity was tested in a coexpression assay. We report here the identification of sgk (serum and glucocorticoid-regulated kinase), a member of the serine–threonine kinase family, as an aldosterone-induced regulator of ENaC activity. sgk mRNA and protein were strongly and rapidly hormone stimulated both in A6 cells and in rat kidney. Furthermore, sgk stimulated ENaC activity approximately 7-fold when they were coexpressed in Xenopus laevis oocytes. These data suggest that sgk plays a central role in aldosterone regulation of Na+ absorption and thus in the control of extracellular fluid volume, blood pressure, and sodium homeostasis.
Resumo:
The regulated expression of type A γ-aminobutyric acid receptor (GABAAR) subunit genes is postulated to play a role in neuronal maturation, synaptogenesis, and predisposition to neurological disease. Increases in GABA levels and changes in GABAAR subunit gene expression, including decreased β1 mRNA levels, have been observed in animal models of epilepsy. Persistent exposure to GABA down-regulates GABAAR number in primary cultures of neocortical neurons, but the regulatory mechanisms remain unknown. Here, we report the identification of a TATA-less minimal promoter of 296 bp for the human GABAAR β1 subunit gene that is neuron specific and autologously down-regulated by GABA. β1 promoter activity, mRNA levels, and subunit protein are decreased by persistent GABAAR activation. The core promoter, 270 bp, contains an initiator element (Inr) at the major transcriptional start site. Three concatenated copies of the 10-bp Inr and its immediate 3′ flanking sequence produce full neural specific activity that is down-regulated by GABA in transiently transfected neocortical neurons. Taking these results together with those of DNase I footprinting, electrophoretic mobility shift analysis, and 2-bp mutagenesis, we conclude that GABA-induced down-regulation of β1 subunit mRNAs involves the differential binding of a sequence-specific basal transcription factor(s) to the Inr. The results support a transcriptional mechanism for the down-regulation of β1 subunit GABAAR gene expression and raises the possibility that altered levels of sequence-specific basal transcription factors may contribute to neurological disorders such as epilepsy.
Resumo:
γ-Hydroxybutyrate (GHB), an anesthetic adjuvant analog of γ-aminobutyrate (GABA), depresses cell excitability in hippocampal neurons by inducing hyperpolarization through the activation of a prominent inwardly rectifying K+ (Kir3) conductance. These GABA type B (GABAB)-like effects are clearly shown at high concentrations of GHB corresponding to blood levels usually reached during anesthesia and are mimicked by the GABAB agonist baclofen. Recent studies of native GABAB receptors (GABABRs) have favored the concept that GHB is also a selective agonist. Furthermore, cloning has demonstrated that GABABRs assemble heteromeric complexes from the GABABR1 and GABABR2 subtypes and that these assemblies are activated by GHB. The surprisingly high tissue content, together with anti-ischemic and protective effects of GHB in the heart, raises the question of a possible influence of GABAB agonists on excitable cardiac cells. In the present study, we provide electrophysiological evidence that GHB activates an inwardly rectifying K+ current in rat ventricular myocytes. This effect is mimicked by baclofen, reversibly inhibited by GABAB antagonists, and prevented by pertussis toxin pretreatment. Both GABABR1 and GABABR2 are detected in cardiomyocytes by Western blotting and are shown to coimmunoprecipitate. Laser scanning confocal microscopy discloses an even distribution of the two receptors in the sarcolemma and along the transverse tubular system. Hence, we conclude that GABABRs are distributed not only in neuronal tissues but also in the heart, where they can be activated and induce electrophysiological alterations through G-protein-coupled inward rectifier potassium channels.
Resumo:
Modulation of the N-methyl-d-aspartate (NMDA)-selective glutamate receptors by extracellular protons and Zn2+ may play important roles during ischemia in the brain and during seizures. Recombinant NR1/NR2A receptors exhibit a much higher apparent affinity for voltage-independent Zn2+ inhibition than receptors with other subunit combinations. Here, we show that the mechanism of this apparent high-affinity, voltage-independent Zn2+ inhibition for NR2A-containing receptors results from the enhancement of proton inhibition. We also show that the N-terminal leucine/isoleucine/valine binding protein (LIVBP)-like domain of the NR2A subunit contains critical determinants of the apparent high-affinity, voltage-independent Zn2+ inhibition. Mutations H42A, H44G, or H128A greatly increase the Zn2+ IC50 (by up to ≈700-fold) with no effect on the potencies of glutamate and glycine or on voltage-dependent block by Mg2+. Furthermore, the amino acid residue substitution H128A, which mediates the largest effect on the apparent high-affinity Zn2+ inhibition among all histidine substitutions we tested, is also critical to the pH-dependency of Zn2+ inhibition. Our data revealed a unique interaction between two important extracellular modulators of NMDA receptors.
Resumo:
GABAergic (GABA = γ-aminobutyric acid) neurons from different brain regions contain high levels of parvalbumin, both in their soma and in their neurites. Parvalbumin is a slow Ca2+ buffer that may affect the amplitude and time course of intracellular Ca2+ transients in terminals after an action potential, and hence may regulate short-term synaptic plasticity. To test this possibility, we have applied paired-pulse stimulations (with 30- to 300-ms intervals) at GABAergic synapses between interneurons and Purkinje cells, both in wild-type (PV+/+) mice and in parvalbumin knockout (PV−/−) mice. We observed paired-pulse depression in PV+/+ mice, but paired-pulse facilitation in PV−/− mice. In paired recordings of connected interneuron-Purkinje cells, dialysis of the presynaptic interneuron with the slow Ca2+ buffer EGTA (1 mM) rescues paired-pulse depression in PV−/− mice. These data show that parvalbumin potently modulates short-term synaptic plasticity.
Resumo:
Postmortem prefrontal cortices (PFC) (Brodmann’s areas 10 and 46), temporal cortices (Brodmann’s area 22), hippocampi, caudate nuclei, and cerebella of schizophrenia patients and their matched nonpsychiatric subjects were compared for reelin (RELN) mRNA and reelin (RELN) protein content. In all of the brain areas studied, RELN and its mRNA were significantly reduced (≈50%) in patients with schizophrenia; this decrease was similar in patients affected by undifferentiated or paranoid schizophrenia. To exclude possible artifacts caused by postmortem mRNA degradation, we measured the mRNAs in the same PFC extracts from γ-aminobutyric acid (GABA)A receptors α1 and α5 and nicotinic acetylcholine receptor α7 subunits. Whereas the expression of the α7 nicotinic acetylcholine receptor subunit was normal, that of the α1 and α5 receptor subunits of GABAA was increased when schizophrenia was present. RELN mRNA was preferentially expressed in GABAergic interneurons of PFC, temporal cortex, hippocampus, and glutamatergic granule cells of cerebellum. A protein putatively functioning as an intracellular target for the signal-transduction cascade triggered by RELN protein released into the extracellular matrix is termed mouse disabled-1 (DAB1) and is expressed at comparable levels in the neuroplasm of the PFC and hippocampal pyramidal neurons, cerebellar Purkinje neurons of schizophrenia patients, and nonpsychiatric subjects; these three types of neurons do not express RELN protein. In the same samples of temporal cortex, we found a decrease in RELN protein of ≈50% but no changes in DAB1 protein expression. We also observed a large (up to 70%) decrease of GAD67 but only a small decrease of GAD65 protein content. These findings are interpreted within a neurodevelopmental/vulnerability “two-hit” model for the etiology of schizophrenia.
Resumo:
Insulin-like growth factors-I and -II (IGF-I and -II) are structurally related mitogenic polypeptides with potent growth promoting effects. These peptides and their corresponding IGF-I and -II receptors are selectively localized in the brain. To date, most of the effects of IGFs are believed to be mediated by IGF-I receptors whereas the significance of IGF-II receptor in mediating biological responses remains unclear. In the present study, we characterized the distribution of IGF-I and IGF-II receptor sites and investigated the effects of both factors on endogenous acetylcholine (ACh) release in adult rat hippocampus. [125I]IGF-I receptor binding sites are recognized by IGF-I> IGF-II> insulin, whereas [125I]IGF-II binding was competed potently by IGF-II> IGF-I but not by insulin. At the cellular level, IGF-I receptor sites were primarily noted in the molecular layer of the dentate gyrus and the CA2-CA3 subfields of the Ammon’s horn whereas IGF-II sites were localized predominantly in the pyramidal cell layer of the CA1-CA3 subfields and in the granular cell layer of the dentate gyrus. IGF-I (10−14–10−8 M) and des(1–3) IGF-I (10−10–10−8 M) were found to inhibit whereas IGF-II (10−14–10−8 M) potentiated K+-evoked ACh release from hippocampal slices. Tetrodotoxin altered the effects of IGF-I but not those of IGF-II suggesting that IGF-I acts indirectly via the release of other modulators whereas IGF-II acts directly on or in close proximity to the cholinergic terminals. The inhibitory effects of IGF-I were also observed in the frontal cortex but not in the striatum. In contrast, the stimulatory effects of IGF-II were evident both in the frontal cortex and striatum. Taken together, these results reveal the differential localization of IGF-I and IGF-II receptor sites in the hippocampal formation and the opposite role for these growth factors in the acute regulation of ACh release likely via two distinct mechanisms. Additionally, these data provide the first evidence for a direct role for IGF-II and its receptors in the regulation of transmitter release in the central nervous system.
Resumo:
γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, is synthesized by two glutamate decarboxylase isoforms, GAD65 and GAD67. The separate role of the two isoforms is unknown, but differences in saturation with cofactor and subcellular localization suggest that GAD65 may provide reserve pools of GABA for regulation of inhibitory neurotransmission. We have disrupted the gene encoding GAD65 and backcrossed the mutation into the C57BL/6 strain of mice. In contrast to GAD67−/− animals, which are born with developmental abnormalities and die shortly after birth, GAD65−/− mice appear normal at birth. Basal GABA levels and holo-GAD activity are normal, but the pyridoxal 5′ phosphate-inducible apo-enzyme reservoir is significantly decreased. GAD65−/− mice develop spontaneous seizures that result in increased mortality. Seizures can be precipitated by fear or mild stress. Seizure susceptibility is dramatically increased in GAD65−/− mice backcrossed into a second genetic background, the nonobese diabetic (NOD/LtJ) strain of mice enabling electroencephalogram analysis of the seizures. The generally higher basal brain GABA levels in this backcross are significantly decreased by the GAD65−/− mutation, suggesting that the relative contribution of GABA synthesized by GAD65 to total brain GABA levels is genetically determined. Seizure-associated c-fos-like immunoreactivity reveals the involvement of limbic regions of the brain. These data suggest that GABA synthesized by GAD65 is important in the dynamic regulation of neural network excitability, implicate at least one modifier locus in the NOD/LtJ strain, and present GAD65−/− animals as a model of epilepsy involving GABA-ergic pathways.
Resumo:
The functional characteristics and cellular localization of the γaminobutyric acid (GABA) ρ1 receptor and its nonfunctional isoform ρ1Δ450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with ρ1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type ρ1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, ρ1Δ450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing ρ1Δ450-GFP was distributed similarly to that of ρ1-GFP. Mammalian cells transfected with the ρ1-GFP or ρ1Δ450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that ρ1Δ450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, ρ1- and ρ1Δ450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.
Resumo:
A study was made of glycine (Gly) and γ-aminobutyric acid (GABA) receptors expressed in Xenopus oocytes injected with rat mRNAs isolated from the encephalon, midbrain, and brainstem of 18-day-old rat embryos. In oocytes injected with encephalon, midbrain, or brainstem mRNAs, the Gly-current amplitudes (membrane current elicited by Gly; 1 mM Gly) were respectively 115 ± 35, 346 ± 28, and 389 ± 22 nA, whereas the GABA-currents (1 mM GABA) were all ≤40 nA. Moreover, the Gly-currents desensitized faster in oocytes injected with encephalon or brainstem mRNAs. The EC50 for Gly was 611 ± 77 μM for encephalon, 661 ± 28 μM for midbrain, and 506 ± 18 μM for brainstem mRNA-injected oocytes, and the corresponding Hill coefficients were all ≈2. Strychnine inhibited all of the Gly-currents, with an IC50 of 56 ± 3 nM for encephalon, 97 ± 4 nM for midbrain, and 72 ± 4 nM for brainstem mRNAs. During repetitive Gly applications, the Gly-currents were potentiated by 1.6-fold for encephalon, 2.1-fold for midbrain, and 1.3-fold for brainstem RNA-injected oocytes. Raising the extracellular Ca2+ concentration significantly increased the Gly-currents in oocytes injected with midbrain and brainstem mRNAs. Reverse transcription–PCR studies showed differences in the Gly receptor (GlyR) α-subunits expressed, whereas the β-subunit was present in all three types of mRNA. These results indicate differential expression of GlyR mRNAs in the brain areas examined, and these mRNAs lead to the expression of GlyRs that have different properties. The modulation of GlyRs by Ca2+ could play important functions during brain development.