936 resultados para Functional groups
Resumo:
At least 11 complementation groups (CGs) have been identified for the peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, for which seven pathogenic genes have been elucidated. We have isolated a human PEX19 cDNA (HsPEX19) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary cell line, ZP119, defective in import of both matrix and membrane proteins. This cDNA encodes a hydrophilic protein (Pex19p) comprising 299 amino acids, with a prenylation motif, CAAX box, at the C terminus. Farnesylated Pex19p is partly, if not all, anchored in the peroxisomal membrane, exposing its N-terminal part to the cytosol. A stable transformant of ZP119 with HsPEX19 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX19 expression also restored peroxisomal protein import in fibroblasts from a patient (PBDJ-01) with Zellweger syndrome of CG-J. This patient (PBDJ-01) possessed a homozygous, inactivating mutation: a 1-base insertion, A764, in a codon for Met255, resulted in a frameshift, inducing a 24-aa sequence entirely distinct from normal Pex19p. These results demonstrate that PEX19 is the causative gene for CG-J PBD and suggest that the C-terminal part, including the CAAX homology box, is required for the biological function of Pex19p. Moreover, Pex19p is apparently involved at the initial stage in peroxisome membrane assembly, before the import of matrix protein.
Resumo:
Handedness is the clearest example of behavioral lateralization in humans. It is not known whether the obvious asymmetry manifested by hand preference is associated with similar asymmetry in brain activation during movement. We examined the functional activation in cortical motor areas during movement of the dominant and nondominant hand in groups of right-handed and left-handed subjects and found that use of the dominant hand was associated with a greater volume of activation in the contralateral motor cortex. Furthermore, there was a separate relation between the degree of handedness and the extent of functional lateralization in the motor cortex. The patterns of functional activation associated with the direction and degree of handedness suggest that these aspects are independent and are coded separately in the brain.
Resumo:
Nerve growth factor (NGF) stimulates functional recovery from cognitive impairments associated with aging, either when administered as a purified protein or by means of gene transfer to the basal forebrain. Because gene transfer procedures need to be tested in long-term experimental paradigms to assess their in vivo efficiency, we have used ex vivo experimental gene therapy to provide local delivery of NGF to the aged rat brain over a period of 2.5 months by transplanting immortalized central nervous system-derived neural stem cells genetically engineered to secrete NGF. By grafting them at two independent locations in the basal forebrain, medial septum and nucleus basalis magnocellularis, we show that functional recovery as assessed in the Morris water maze can be achieved by neurotrophic stimulation of any of these cholinergic cell groups. Moreover, the cholinergic neurons in the grafted regions showed a hypertrophic response resulting in a reversal of the age-associated atrophy seen in the learning-impaired aged control rats. Long-term expression of the transgene lead to an increased NGF tissue content (as determined by NGF-ELISA) in the transplanted regions up to at least 10 weeks after grafting. We conclude that the gene transfer procedure used here is efficient to provide the brain with a long-lasting local supply of exogenous NGF, induces long-term functional recovery of cognitive functions, and that independent trophic stimulation of the medial septum or nucleus basalis magnocellularis has similar consequences at the behavioral level.
Resumo:
Chemical modification of proteins is a common theme in their regulation. Nitrosylation of protein sulfhydryl groups has been shown to confer nitric oxide (NO)-like biological activities and to regulate protein functions. Several other nucleophilic side chains -- including those with hydroxyls, amines, and aromatic carbons -- are also potentially susceptible to nitrosative attack. Therefore, we examined the reactivity and functional consequences of nitros(yl)ation at a variety of nucleophilic centers in biological molecules. Chemical analysis and spectroscopic studies show that nitrosation reactions are sustained at sulfur, oxygen, nitrogen, and aromatic carbon centers, with thiols being the most reactive functionality. The exemplary protein, BSA, in the presence of a 1-, 20-, 100-, or 200-fold excess of nitrosating equivalents removes 0.6 +/- 0.2, 3.2 +/- 0.4, 18 +/- 4, and 38 +/- 10, respectively, moles of NO equivalents per mole of BSA from the reaction medium; spectroscopic evidence shows the proportionate formation of a polynitrosylated protein. Analogous reaction of tissue-type plasminogen activator yields comparable NO protein stoichiometries. Disruption of protein tertiary structure by reduction results in the preferential nitrosylation of up to 20 thus-exposed thiol groups. The polynitrosylated proteins exhibit antiplatelet and vasodilator activity that increases with the degree of nitrosation, but S-nitroso derivatives show the greatest NO-related bioactivity. Studies on enzymatic activity of tissue-type plasminogen activator show that polynitrosylation may lead to attenuated function. Moreover, the reactivity of tyrosine residues in proteins raises the possibility that NO could disrupt processes regulated by phosphorylation. Polynitrosylated proteins were found in reaction mixtures containing interferon-gamma/lipopolysaccharide-stimulated macrophages and in tracheal secretions of subjects treated with NO gas, thus suggesting their physiological relevance. In conclusion, multiple sites on proteins are susceptible to attack by nitrogen oxides. Thiol groups are preferentially modified, supporting the notion that S-nitrosylation can serve to regulate protein function. Nitrosation reactions sustained at additional nucleophilic centers may have (patho)physiological significance and suggest a facile route by which abundant NO bioactivity can be delivered to a biological system, with specificity dictated by protein substrate.
Resumo:
Biological processes often require that a single gene product participate in multiple types of molecular interactions. Viruses with quasiequivalent capsids provide an excellent paradigm for studying such phenomena because identical protein subunits are found in different structural environments. Differences in subunit joints may be controlled by protein segments, duplex or single-stranded RNA, metal ions, or some combination of these. Each of the virus groups examined display a distinctive mechanism for switching interface interactions, illustrating the magnitude of options that are likely to be found in other biological systems. In addition to determining capsid morphology, assembly controls the timing of autocatalytic maturation cleavage of the viral subunits that is required for infectivity in picorna-, noda-, and tetraviruses. The mechanism of assembly-dependent cleavage is conserved in noda- and tetraviruses, although the quaternary structures of the capsids are different as are the molecular switches that control subunit interfaces. The function of the cleavage in picorna-, noda-, and tetraviruses is probably to release polypeptides that participate in membrane translocation of RNA.
Resumo:
Feline immunodeficiency virus (FIV) encodes the enzyme deoxyuridine-triphosphatase (DU; EC 3.6.1.23) between the coding regions for reverse transcriptase and integrase in the pol gene. Here, we report the in vivo infection of cats with a DU- variant of the PPR strain of FIV and compare its growth properties and tissue distribution with those of wild-type FIV-PPR. The results reveal several important points: (i) DU- FIV is able to infect the cat, with kinetics similar to that observed with wild-type FIV; (ii) both wild-type and DU- FIV-infected specific-pathogen free cats mount a strong humoral antibody response which is able to limit the virus burden in both groups of animals; (iii) the virus burden is reduced in the DU- FIV-infected cats, particularly in tissues such as spleen and salivary gland; and (iv) the mutation frequency in DU- FIVs integrated in the DNA of primary macrophages after 9 months of infection is approximately 5-fold greater than the frequency observed in DU- FIV DNA integrated in T lymphocytes. Mutation rate with wild-type FIV remains the same in both cell types in vivo. The dominant mutations seen in macrophages with DU- FIV are G-->A base changes, consistent with an increased misincorporation of deoxyuridine into viral DNA of DU- FIVs during reverse transcription. Because this enzyme is absent from human immunodeficiency virus type 1 and other primate lentiviruses, virus replication in cell environments with low DU activity may lead to increased mutation and contribute to the rapid expansion of the viral repertoire.
Resumo:
This thesis is devoted to the investigation of inter and intramolecular charge transfer (CT) in molecular functional materials and specifically organic dyes and CT crystals. An integrated approach encompassing quantum-chemical calculations, semiempirical tools, theoretical models and spectroscopic measurements is applied to understand structure-property relationships governing the low-energy physics of these materials. Four main topics were addressed: 1) Spectral properties of organic dyes. Charge-transfer dyes are constituted by electron donor (D) and electron acceptor (A) units linked through bridge(s) to form molecules with different symmetry and dimensionality. Their low-energy physics is governed by the charge resonance between D and A groups and is effectively described by a family of parametric Hamiltonians known as essential-state models. These models account for few electronic states, corresponding to the main resonance structures of the relevant dye, leading to a simple picture that is completed introducing the coupling of the electronic system to molecular vibrations, treated in a non-adiabatic way, and an effective classical coordinate, describing polar solvation. In this work a specific essential-state model was proposed and parametrized for the dye Brilliant Green. The central issue in this work has been the definition of the diabatic states, a not trivial task for a multi-branched chromophore. In a second effort, we have used essential-state models for the description of the early-stage dynamics of excited states after ultrafast excitation. Crucial to this work is the fully non-adiabatic treatment of the coupled electronic and vibrational motion, allowing for a reliable description of the dynamics of systems showing a multistable, broken-symmetry excited state. 2) Mixed-stack CT salts. Mixed-stack (MS) CT crystals are an interesting class of multifunctional molecular materials, where D and A molecules arrange themselves to form stacks, leading to delocalized electrons in one dimension. The interplay between the intermolecular CT, electrostatic interactions, lattice phonons and molecular vibrations leads to intriguing physical properties that include (photoinduced) phase transitions, multistability, antiferromagnetism, ferroelectricity and potential multiferroicity. The standard microscopic model to describe this family of materials is the Modified Hubbard model accounting for electron-phonon coupling (Peierls coupling), electron-molecular vibrations coupling (Holstein coupling) and electrostatic interactions. We adopt and validate a method, based on DFT calculations on dimeric DA structures, to extract relevant model parameters. The approach offers a powerful tool to shed light on the complex physics of MS-CT salts. 3) Charge transfer in organic radical dipolar dyes. In collaboration with the group of Prof. Jaume Veciana (ICMAB- Barcellona), we have studied spectral properties of a special class of CT dyes with D-bridge-A structure where the acceptor group is a stable radical (of the perchlorotriphenylmethyl, PTM, family), leading to an open-shell CT dyes. These materials are of interest since they associate the electronic and optical properties of CT dyes with magnetic properties from the unpaired electron. The first effort was devoted to the parametrization of the relevant essential-state model. Two strategies were adopted, one based on the calculation of the low-energy spectral properties, the other based on the variation of ground state properties with an applied electric field. 4) The spectral properties of organic nanoparticles based on radical species are investigated in collaboration with Dr. I. Ratera (ICMAB- Barcellona). Intriguing spectroscopic behavior was observed pointing to the presence of excimer states. In an attempt to rationalize these findings, extensive calculations (TD-DFT and ZINDO) were performed. The results for the isolated dyes are validated against experimental spectra in solution. To address intermolecular interactions we studied dimeric structures in the gas phase, but the preliminary results obtained do not support excimer formation.
Resumo:
The delineation of functional economic areas, or market areas, is a problem of high practical relevance, since the delineation of functional sets such as economic areas in the US, Travel-to-Work Areas in the United Kingdom, and their counterparts in other OECD countries are the basis of many statistical operations and policy making decisions at local level. This is a combinatorial optimisation problem defined as the partition of a given set of indivisible spatial units (covering a territory) into regions characterised by being (a) self-contained and (b) cohesive, in terms of spatial interaction data (flows, relationships). Usually, each region must reach a minimum size and self-containment level, and must be continuous. Although these optimisation problems have been typically solved through greedy methods, a recent strand of the literature in this field has been concerned with the use of evolutionary algorithms with ad hoc operators. Although these algorithms have proved to be successful in improving the results of some of the more widely applied official procedures, they are so time consuming that cannot be applied directly to solve real-world problems. In this paper we propose a new set of group-based mutation operators, featuring general operations over disjoint groups, tailored to ensure that all the constraints are respected during the operation to improve efficiency. A comparative analysis of our results with those from previous approaches shows that the proposed algorithm systematically improves them in terms of both quality and processing time, something of crucial relevance since it allows dealing with most large, real-world problems in reasonable time.
Resumo:
The grafting of functional brushes on the surface of molecularly imprinted polymer (MIP). particles hás been explored in the last few years to synthesize materiais combining high molecular recognition capabilities and stimulation triggered by changes in the surrounding environment [1, 2]. In the present work, MIP particles for 5-fluorouracil (a drug used in câncer treatment) were produced by precipitation polymerization in acetonitrile, using either MAA or HEMA as imprinting fünctional monomers, and m the presence of different kinds of RAFT agents. In a second step, taking advantage of the RAFT groups present in the surface of the particles, different kinds of fiinctional polymer brushes were grafted on the MIPs considering a "grafting from" process in the presence of a RAFT agent.
Resumo:
Primary objective : To establish a process whereby assessment of functional communication reflects the authentic communication of the target population. The major functional communication assessments available from the USA may not be as relevant to those who reside elsewhere, nor assessments developed primarily for persons who have had a stroke as relevant for traumatic brain injury rehabilitation. Research design : The investigation used the Nominal Group Technique to elicit free opinion and support individuals who have compromised communication ability. A survey mailed out sampled a larger number of stakeholders to test out differences among groups. Methods and procedures : Five stakeholder groups generated items and the survey determined relative 'importance'. The stakeholder groups in both studies comprised individuals with traumatic brain injury and their families, health professionals, third-party payers, employers, and Maori, the indigenous population of New Zealand. Main outcomes and results : There was no statistically significant difference found between groups for 19 of the 31 items. Only half of the items explicitly appear on a well-known USA functional communication assessment. Conclusions : The present study has implications for whether functional communication assessments are valid across cultures and the type of impairment.
Resumo:
Objective: To evaluate contractile reserve (CR) determined by exercise echocardiography in predicting clinical outcome and left ventricular (LV) function in asymptomatic severe mitral regurgitation (MR). Design: Cohort study. Setting: Regional cardiac centre. Patients and outcome measures: LV volumes and ejection fraction (EF) were measured at rest and after stress in 71 patients with isolated MR. During follow up (mean (SD) 3 (1) years), EF and functional capacity were serially assessed and cardiac events ( cardiac death, heart failure, and new atrial fibrillation) were documented. Results: CR was present in 45 patients (CR+) and absent in 26 patients (CR-). Age, resting LV dimensions, EF, and MR severity were similar in both groups. Mitral surgery was performed in 19 of 45 (42%) CR+ patients and 22 of 26 (85%) CR2 patients. In patients undergoing surgery, CR was an independent predictor of follow up EF (p = 0.006) and postoperative LV dysfunction (EF < 50%) persisted in five patients, all in the CR2 group. Event-free survival was lower in surgically treated patients without CR (p = 0.03). In medically treated patients, follow up EF was preserved in those with intact CR but progressively deteriorated in patients without CR, in whom functional capacity also deteriorated. Conclusions: Evaluation of CR by exercise echocardiography may be useful for risk stratification and may help to optimise the timing of surgery in asymptomatic severe MR.
Resumo:
Adsorption of nitrogen in spherical pores of FDU-1 silica at 77 K is considered by means of a nonlocal density functional theory (NLDFT) accounting for a disordered structure of pore walls. Pore size distribution analysis of various FDU-1 samples subject to different temperatures of calcination revealed three distinct groups of pores. The principal group of pores is identified as ordered spherical mesopores connected with each other by smaller interconnecting pores and irregular micropores present in the mesopore walls. To account for the entrances (connecting pores) into spherical mesopores, a concept of solid mass distribution with respect to the apparent density was introduced. It is shown that the introduction of the aforementioned distribution was sufficient to quantitatively describe experimental adsorption isotherms over the entire range of relative pressures spanning six decades.
Resumo:
Caudal block results in a motor blockade that can reduce abdominal wall tension. This could interact with the balance between chest wall and lung recoil pressure and tension of the diaphragm, which determines the static resting volume of the lung. On this rationale, we hypothesised that caudal block causes an increase in functional residual capacity and ventilation distribution in anaesthetised children. Fifty-two healthy children (15-30 kg, 3-8 years of age) undergoing elective surgery with general anaesthesia and caudal block were studied and randomly allocated to two groups: caudal block or control. Following induction of anaesthesia, the first measurement was obtained in the supine position (baseline). All children were then turned to the left lateral position and patients in the caudal block group received a caudal block with bupivacaine. No intervention took place in the control group. After 15 nun in the supine position, the second assessment was performed. Functional residual capacity and parameters of ventilation distribution were calculated by a blinded reviewer. Functional residual capacity was similar at baseline in both groups. In the caudal block group, the capacity increased significantly (p < 0.0001) following caudal block, while in the control group, it remained unchanged. In both groups, parameters of ventilation distribution were consistent with the changes in functional residual capacity. Caudal block resulted in a significant increase in functional residual capacity and improvement in ventilation homogeneity in comparison with the control group. This indicates that caudal block might have a beneficial effect on gas exchange in anaesthetised, spontaneously breathing preschool-aged children with healthy lungs.
Resumo:
It is well known that resistance training improves muscle strength in older adults and may enhance or preserve functional performance. However, it is unclear if the volume of work undertaken in the elderly alters the response in functional performance. PURPOSE: To investigate the effect of a high- versus low-volume resistance training program on functional performance in older adults. METHODS: Thirty-two healthy men and women aged 65-78 years were randomly assigned to either a single-set (SS, n = 16) or 3-set (MS, n = 16) progressive resistance training program for 20 weeks. Groups trained 2 days per week using machine weights at 8 repetitions maximum (8-RM) for 7 upper and lower body exercises. Muscle strength was assessed by the 1-RM and functional performance by a battery of tests (repeated chair rise, usual and fast 6-m walk, 6-m backwards walk, floor rise to standing, stair climb, and 400-m walk time). RESULTS: Twenty-eight subjects completed the study. There was no difference between groups at baseline in muscle strength or functional performance. Whole body muscle strength significantly increased in both groups with greater gains in the 3-set group (MS 32.9 ± 3.1%; SS 18.6 ± 2.7%, mean ± SE; P < 0.01). Significant improvement (time effect, P < 0.01) occurred for both groups in the chair rise (MS 13.6 ± 3.2%; SS 10.2 ± 3.0%), 6-m backwards walk (MS 14.9 ± 3.3%; SS 14.3 ± 4.2%), stair climb (MS 6.4 ± 2.8%; SS 7.7 ± 3.1%) and 400-m walk (MS 7.4 ± 1.4%; SS 3.9 ± 1.2%). There were no interaction (group × time) effects for functional performance and no differences by sex. CONCLUSION: Resistance training that utilizes either a singleset or 3-set regimen may significantly and similarly improve functional performance in community-dwelling older adults. Enhancement of functional performance may prolong independence and improve quality of life. ©2004The American College of Sports Medicine
Resumo:
PURPOSE: The purpose of this study was to increase the understanding of the functional impact that coordination problems have during adolescence and early adult life. In particular, this study aimed to investigate the impact coordination deficits have on day-to-day functioning, activity levels, self-concept with respect to coordination, leisure pursuits, occupational types, accidents and injuries, as well as experiences learning to drive. RELEVANCE: This study may enable clinicians to identify at risk situations, such that appropriate prevention and targeting of treatment can occur. SUBJECTS: The participants involved in this study comprised two groups; 40 subjects previously diagnosed with DCD, and their matched controls. METHODS: Participants were initially contacted by mail for their consent to the study. Consenting participants were then contacted via telephone, and interviewed. ANALYSES: Data analysis was performed using SPSS. Chi squared analysis and Mann Whitney U test was also used to compare groups. RESULTS: During both age periods, the number of DCD subjects participating in sport was significantly less than the number of controls. Although in the 12-14 years age category, the two groups displayed similar results for the type of sport chosen, the 18 – 20 years age group, showed significant differences, with the number of DCD subjects participating in High level coordination activities, being significantly less than controls. Self-perception with respect to coordination was also significantly different amongst groups with more DCD subjects, having perceived themselves as being clumsy. Similarly, a significantly greater number of DCD subjects admitted to tripping over themselves regularly. Some differences have also been noted in the experiences of subjects learning to drive. First, the number of DCD subjects, who had difficulties learning to drive was significantly greater than controls. Second, a much greater number of Control subjects, compared to DCD subjects were successful in obtaining drivers license. Finally, also of interest is the 58% of DCD subjects who have experienced an accident whilst driving, compared to the 35% of controls. The last result of this study was that whilst there was no significant difference between groups, in the number of broken bones, dislocated joints, sprain, burns, stitches, or other significant injuries, the number of control subjects suffering muscle strains was significantly greater than the number of DCD subjects. CONCLUSION: The results of this study indicate that DCD has many implications on day-to-day functioning, both in adolescence and early adulthood. Findings have shown despite the significant sensory-motor deficits displayed by DCD subjects, the impact that this has on day-to-day functioning may be reduced by lifestyle modification.