866 resultados para Frugivorous birds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, I would like to outline the approach we have taken to mapping and assessing integrity systems and how this has led us to see integrity systems in a new light. Indeed, it has led us to a new visual metaphor for integrity systems – a bird’s nest rather than a Greek temple. This was the result of a pair of major research projects completed in partnership with Transparency International (TI). One worked on refining and extending the measurement of corruption. This, the second, looked at what was then the emerging institutional means for reducing corruption – ‘national integrity systems’

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent theoretical research has shown that ocean currents and wind interact to disperse seeds over long distances among isolated landmasses. Dispersal of seeds among isolated oceanic islands, by birds, oceans and man, is a well-known phenomenon, and many widespread island plants have traits that facilitate this process. Crucially, however, there have been no mechanistic vector-based models of long-distance dispersal for seeds among isolated oceanic islands based on empirical data. Here, we propose a plan to develop seed analogues, or pseudoseeds, fitted with wireless sensor technology that will enable high-fidelity tracking as they disperse across the ocean. The pseudoseeds will be precisely designed to mimic actual seed buoyancy and morphology enabling realistic and accurate, vector-based dispersal models of ocean seed dispersal over vast geographic scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this editorial letter, we provide the readers of Information Systems with a birds-eye introduction to Process-aware Information Systems (PAIS) – a sub-field of Information Systems that has drawn growing attention in the past two decades, both as an engineering and as a management discipline. Against this backdrop, we briefly discuss how the papers included in this special issue contribute to extending the body of knowledge in this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining the temporal scale of biological evolution has traditionally been the preserve of paleontology, with the timing of species originations and major diversifications all being read from the fossil record. However, the ages of the earliest (correctly identified) records will underestimate actual origins due to the incomplete nature of the fossil record and the necessity for lineages to have evolved sufficiently divergent morphologies in order to be distinguished. The possibility of inferring divergence times more accurately has been promoted by the idea that the accumulation of genetic change between modern lineages can be used as a molecular clock (Zuckerkandl and Pauling, 1965). In practice, though, molecular dates have often been so old as to be incongruent even with liberal readings of the fossil record. Prominent examples include inferred diversifications of metazoan phyla hundreds of millions of years before their Cambrian fossil record appearances (e.g., Nei et al., 2001) and a basal split between modern birds (Neoaves) that is almost double the age of their earliest recognizable fossils (e.g., Cooper and Penny, 1997).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term changes in the genetic composition of a population occur by the fixation of new mutations, a process known as substitution. The rate at which mutations arise in a population and the rate at which they are fixed are expected to be equal under neutral conditions (Kimura, 1968). Between the appearance of a new mutation and its eventual fate of fixation or loss, there will be a period in which it exists as a transient polymorphism in the population (Kimura and Ohta, 1971). If the majority of mutations are deleterious (and nonlethal), the fixation probabilities of these transient polymorphisms are reduced and the mutation rate will exceed the substitution rate (Kimura, 1983). Consequently, different apparent rates may be observed on different time scales of the molecular evolutionary process (Penny, 2005; Penny and Holmes, 2001). The substitution rate of the mitochondrial protein-coding genes of birds and mammals has been traditionally recognized to be about 0.01 substitutions/site/million years (Myr) (Brown et al., 1979; Ho, 2007; Irwin et al., 1991; Shields and Wilson, 1987), with the noncoding D-loop evolving several times more quickly (e.g., Pesole et al., 1992; Quinn, 1992). Over the past decade, there has been mounting evidence that instantaneous mutation rates substantially exceed substitution rates, in a range of organisms (e.g., Denver et al., 2000; Howell et al., 2003; Lambert et al., 2002; Mao et al., 2006; Mumm et al., 1997; Parsons et al., 1997; Santos et al., 2005). The immediate reaction to the first of these findings was that the polymorphisms generated by the elevated mutation rate are short-lived, perhaps extending back only a few hundred years (Gibbons, 1998; Macaulay et al., 1997). That is, purifying selection was thought to remove these polymorphisms very rapidly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed “WoodKing” (woodpeckers/rollers/kingfishers), “SCA” (owls/potoos/owlet-nightjars/hummingbirds/swifts), and “Conglomerati.” In general, the support is highly significant with just two exceptions, the owls move from the “SCA” group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the “Conglomerati”. Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ratites are large, flightless birds and include the ostrich, rheas, kiwi, emu, and cassowaries, along with extinct members, such as moa and elephant birds. Previous phylogenetic analyses of complete mitochondrial genome sequences have reinforced the traditional belief that ratites are monophyletic and tinamous are their sister group. However, in these studies ratite monophyly was enforced in the analyses that modeled rate heterogeneity among variable sites. Relaxing this topological constraint results in strong support for the tinamous (which fly) nesting within ratites. Furthermore, upon reducing base compositional bias and partitioning models of sequence evolution among protein codon positions and RNA structures, the tinamou–moa clade grouped with kiwi, emu, and cassowaries to the exclusion of the successively more divergent rheas and ostrich. These relationships are consistent with recent results from a large nuclear data set, whereas our strongly supported finding of a tinamou–moa grouping further resolves palaeognath phylogeny. We infer flight to have been lost among ratites multiple times in temporally close association with the Cretaceous–Tertiary extinction event. This circumvents requirements for transient microcontinents and island chains to explain discordance between ratite phylogeny and patterns of continental breakup. Ostriches may have dispersed to Africa from Eurasia, putting in question the status of ratites as an iconic Gondwanan relict taxon. [Base composition; flightless; Gondwana; mitochondrial genome; Palaeognathae; phylogeny; ratites.]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opening phrase of the title is from Charles Darwin’s notebooks (Schweber 1977). It is a double reminder, firstly that mainstream evolutionary theory is not just about describing nature but is particularly looking for mechanisms or ‘causes’, and secondly, that there will usually be several causes affecting any particular outcome. The second part of the title is our concern at the almost universal rejection of the idea that biological mechanisms are sufficient for macroevolutionary changes, thus rejecting a cornerstone of Darwinian evolutionary theory. Our primary aim here is to consider ways of making it easier to develop and to test hypotheses about evolution. Formalizing hypotheses can help generate tests. In an absolute sense, some of the discussion by scientists about evolution is little better than the lack of reasoning used by those advocating intelligent design. Our discussion here is in a Popperian framework where science is defined by that area of study where it is possible, in principle, to find evidence against hypotheses – they are in principle falsifiable. However, with time, the boundaries of science keep expanding. In the past, some aspects of evolution were outside the current boundaries of falsifiable science, but increasingly new techniques and ideas are expanding the boundaries of science and it is appropriate to re-examine some topics. It often appears that over the last few decades there has been an increasingly strong assumption to look first (and only) for a physical cause. This decision is virtually never formally discussed, just an assumption is made that some physical factor ‘drives’ evolution. It is necessary to examine our assumptions much more carefully. What is meant by physical factors ‘driving’ evolution, or what is an ‘explosive radiation’. Our discussion focuses on two of the six mass extinctions, the fifth being events in the Late Cretaceous, and the sixth starting at least 50,000 years ago (and is ongoing). Cretaceous/Tertiary boundary; the rise of birds and mammals. We have had a long-term interest (Cooper and Penny 1997) in designing tests to help evaluate whether the processes of microevolution are sufficient to explain macroevolution. The real challenge is to formulate hypotheses in a testable way. For example the numbers of lineages of birds and mammals that survive from the Cretaceous to the present is one test. Our first estimate was 22 for birds, and current work is tending to increase this value. This still does not consider lineages that survived into the Tertiary, and then went extinct later. Our initial suggestion was probably too narrow in that it lumped four models from Penny and Phillips (2004) into one model. This reduction is too simplistic in that we need to know about survival and ecological and morphological divergences during the Late Cretaceous, and whether Crown groups of avian or mammalian orders may have existed back into the Cretaceous. More recently (Penny and Phillips 2004) we have formalized hypotheses about dinosaurs and pterosaurs, with the prediction that interactions between mammals (and groundfeeding birds) and dinosaurs would be most likely to affect the smallest dinosaurs, and similarly interactions between birds and pterosaurs would particularly affect the smaller pterosaurs. There is now evidence for both classes of interactions, with the smallest dinosaurs and pterosaurs declining first, as predicted. Thus, testable models are now possible. Mass extinction number six: human impacts. On a broad scale, there is a good correlation between time of human arrival, and increased extinctions (Hurles et al. 2003; Martin 2005; Figure 1). However, it is necessary to distinguish different time scales (Penny 2005) and on a finer scale there are still large numbers of possibilities. In Hurles et al. (2003) we mentioned habitat modification (including the use of Geogenes III July 2006 31 fire), introduced plants and animals (including kiore) in addition to direct predation (the ‘overkill’ hypothesis). We need also to consider prey switching that occurs in early human societies, as evidenced by the results of Wragg (1995) on the middens of different ages on Henderson Island in the Pitcairn group. In addition, the presence of human-wary or humanadapted animals will affect the distribution in the subfossil record. A better understanding of human impacts world-wide, in conjunction with pre-scientific knowledge will make it easier to discuss the issues by removing ‘blame’. While continued spontaneous generation was accepted universally, there was the expectation that animals continued to reappear. New Zealand is one of the very best locations in the world to study many of these issues. Apart from the marine fossil record, some human impact events are extremely recent and the remains less disrupted by time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decline of large coevolved frugivorous species within fragmented habitats can have an effect on ecological processes, for example, seed dispersal and germination. It is therefore necessary for more resilient species to ensure essential processes are maintained within the system. This study investigates the influence of two rodent species, Melomys cervinipes (Fawn-footed Melomys) and Rattus fuscipes (Bush Rat), on the germination process of rainforest fruits. Both species are endemic to north Queensland rainforest and commonly found in fragmented habitats in high densities. We found in 85% of fruit species tested, rodent feeding increased seed germination rate by a factor of 3.5. Our results suggest that rodents can play a significant role in enhancing germination rates of fruits in the tropical rainforest of far north Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Island races of passerine birds display repeated evolution towards larger body size compared with their continental ancestors. The Capricorn silvereye (Zosterops lateralis chlorocephalus) has become up to six phenotypic standard deviations bigger in several morphological measures since colonization of an island approximately 4000 years ago. We estimated the genetic variance-covariance (G) matrix using full-sib and 'animal model' analyses, and selection gradients, for six morphological traits under field conditions in three consecutive cohorts of nestlings. Significant levels of genetic variance were found for all traits. Significant directional selection was detected for wing and tail lengths in one year and quadratic selection on culmen depth in another year. Although selection gradients on many traits were negative, the predicted evolutionary response to selection of these traits for all cohorts was uniformly positive. These results indicate that the G matrix and predicted evolutionary responses are consistent with those of a population evolving in the manner observed in the island passerine trend, that is, towards larger body size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbivory is generally regarded as negatively impacting on host plant fitness. Frugivorous insects, which feed directly on plant reproductive tissues, are predicted to be particularly damaging to hosts. We tested this prediction with the fruit fly, Bactrocera tryoni, by recording the impact of larval feeding on two direct (seed number and germination) and two indirect (fruit decay rate and attraction/deterrence of vertebrate frugivores) measures of host plant fitness. Experiments were done in the laboratory, glasshouse and tropical rainforest. We found no negative impact of larval feeding on seed number or germination for three test plants: tomato, capsicum and eggplant. Further, larval feeding accelerated the initiation of decay and increased the final level of fruit decay in tomatoes, apples, pawpaw and pear, a result considered to be beneficial to the fruit. In rainforest studies, native rodents preferred infested apple and pears compared to uninfested control fruit; however, there were no differences observed between treatments for tomato and pawpaw. For our study fruits, these results demonstrate that fruit fly larval infestation has neutral or beneficial impacts on the host plant, an outcome which may be largely influenced by the physical properties of the host. These results may contribute to explaining why fruit flies have not evolved the same level of host specialization generally observed for other herbivore groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), is the most significant infectious disease in psittacines. PBFD is thought to have originated in Australia but is now found worldwide; in Africa, it threatens the survival of the indigenous endangered Cape parrot and the vulnerable black-cheeked lovebird. We investigated the genetic diversity of putative BFDVs from southern Africa. Feathers and heparinized blood samples were collected from 27 birds representing 9 psittacine species, all showing clinical signs of PBFD. DNA extracted from these samples was used for PCR amplification of the putative BFDV coat protein (CP) gene. The nucleotide sequences of the CP genes of 19 unique BFDV isolates were determined and compared with the 24 previously described sequences of BFDV isolates from Australasia and America. Phylogenetic analysis revealed eight BFDV lineages, with the southern African isolates representing at least three distinctly unique genotypes; 10 complete genome sequences were determined, representing at least one of every distinct lineage. The nucleotide diversity of the southern African isolates was calculated to be 6.4% and is comparable to that found in Australia and New Zealand. BFDVs in southern Africa have, however, diverged substantially from viruses found in other parts of the world, as the average distance between the southern African isolates and BFDV isolates from Australia ranged from 8.3 to 10.8%. In addition to point mutations, recombination was found to contribute substantially to the level of genetic variation among BFDVs, with evidence of recombination in all but one of the genomes analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.