948 resultados para Frequency Modulated Signals, Parameter Estimation, Signal-to-Noise-Ratio, Simulations
Resumo:
Objective: To examine the association between obesity and food group intakes, physical activity and socio-economic status in adolescents. Design: A cross-sectional study was carried out in 2008. Cole’s cut-off points were used to categorize BMI. Abdominal obesity was defined by a waist circumference at or above the 90th percentile, as well as a waist-to-height ratio at or above 0?500. Diet was evaluated using an FFQ, and the food group consumption was categorized using sex-specific tertiles of each food group amount. Physical activity was assessed via a self-report questionnaire. Socio-economic status was assessed referring to parental education and employment status. Data were analysed separately for girls and boys and the associations among food consumption, physical activity, socio-economic status and BMI, waist circumference and waist-to-height ratio were evaluated using logistic regression analysis, adjusting the results for potential confounders. Setting: Public schools in the Azorean Archipelago, Portugal. Subjects: Adolescents (n 1209) aged 15–18 years. Results: After adjustment, in boys, higher intake of ready-to-eat cereals was a negative predictor while vegetables were a positive predictor of overweight/ obesity and abdominal obesity. Active boys had lower odds of abdominal obesity compared with inactive boys. Boys whose mother showed a low education level had higher odds of abdominal obesity compared with boys whose mother presented a high education level. Concerning girls, higher intake of sweets and pastries was a negative predictor of overweight/obesity and abdominal obesity. Girls in tertile 2 of milk intake had lower odds of abdominal obesity than those in tertile 1. Girls whose father had no relationship with employment displayed higher odds of abdominal obesity compared with girls whose father had high employment status. Conclusions: We have found that different measures of obesity have distinct associations with food group intakes, physical activity and socio-economic status.
Resumo:
Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.
Resumo:
A measurement is presented of the tt¯ inclusive production cross section in pp collisions at a center-of-mass energy of s√=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton+jets final state using a data set corresponding to an integrated luminosity of 20.3 fb−1. The cross section was obtained using a likelihood discriminant fit and b-jet identification was used to improve the signal-to-background ratio. The inclusive tt¯ production cross section was measured to be 260±1(stat)+22−23(stat)±8(lumi)±4(beam) pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 253+13−15 pb. The tt¯→(e,μ)+jets production cross section in the fiducial region determined by the detector acceptance is also reported.
Relationship between Neutrophil-To-Lymphocyte Ratio and Electrocardiographic Ischemia Grade in STEMI
Resumo:
Background: Neutrophil-to-lymphocyte ratio (NLR) has been found to be a good predictor of future adverse cardiovascular outcomes in patients with ST-segment elevation myocardial infarction (STEMI). Changes in the QRS terminal portion have also been associated with adverse outcomes following STEMI. Objective: To investigate the relationship between ECG ischemia grade and NLR in patients presenting with STEMI, in order to determine additional conventional risk factors for early risk stratification. Methods: Patients with STEMI were investigated. The grade of ischemia was analyzed from the ECG performed on admission. White blood cells and subtypes were measured as part of the automated complete blood count (CBC) analysis. Patients were classified into two groups according to the ischemia grade presented on the admission ECG, as grade 2 ischemia (G2I) and grade 3 ischemia (G3I). Results: Patients with G3I had significantly lower mean left ventricular ejection fraction than those in G2I (44.58 ± 7.23 vs. 48.44 ± 7.61, p = 0.001). As expected, in-hospital mortality rate increased proportionally with the increase in ischemia grade (p = 0.036). There were significant differences in percentage of lymphocytes (p = 0.010) and percentage of neutrophils (p = 0.004), and therefore, NLR was significantly different between G2I and G3I patients (p < 0.001). Multivariate logistic regression analysis revealed that only NLR was the independent variable with a significant effect on ECG ischemia grade (odds ratio = 1.254, 95% confidence interval 1.120–1.403, p < 0.001). Conclusion: We found an association between G3I and elevated NLR in patients with STEMI. We believe that such an association might provide an additional prognostic value for risk stratification in patients with STEMI when combined with standardized risk scores.
Resumo:
Abstract Background: Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are inflammatory markers used as prognostic factors in various diseases. The aims of this study were to compare the PLR and the NLR of heart failure (HF) patients with those of age-sex matched controls, to evaluate the predictive value of those markers in detecting HF, and to demonstrate the effect of NLR and PLR on mortality in HF patients during follow-up. Methods: This study included 56 HF patients and 40 controls without HF. All subjects underwent transthoracic echocardiography to evaluate cardiac functions. The NLR and the PLR were calculated as the ratio of neutrophil count to lymphocyte count and as the ratio of platelet count to lymphocyte count, respectively. All HF patients were followed after their discharge from the hospital to evaluate mortality, cerebrovascular events, and re-hospitalization. Results: The NLR and the PLR of HF patients were significantly higher compared to those of the controls (p < 0.01). There was an inverse correlation between the NLR and the left ventricular ejection fraction of the study population (r: -0.409, p < 0.001). The best cut-off value of NLR to predict HF was 3.0, with 86.3% sensitivity and 77.5% specificity, and the best cut-off value of PLR to predict HF was 137.3, with 70% sensitivity and 60% specificity. Only NLR was an independent predictor of mortality in HF patients. A cut-off value of 5.1 for NLR can predict death in HF patients with 75% sensitivity and 62% specificity during a 12.8-month follow-up period on average. Conclusion: NLR and PLR were higher in HF patients than in age-sex matched controls. However, NLR and PLR were not sufficient to establish a diagnosis of HF. NLR can be used to predict mortality during the follow-up of HF patients.
Resumo:
The large spatial inhomogeneity in transmit B, field (B-1(+)) observable in human MR images at hi h static magnetic fields (B-0) severely impairs image quality. To overcome this effect in brain T-1-weighted images the, MPRAGE sequence was modified to generate two different images at different inversion times MP2RAGE By combining the two images in a novel fashion, it was possible to create T-1-weigthed images where the result image was free of proton density contrast, T-2* contrast, reception bias field, and, to first order transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B-1(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T-1-weighted images, acquired within 12 min, high-resolution 3D T-1 maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T-1 maps were validated in phantom experiments. In humans, the T, values obtained at 7 T were 1.15 +/- 0.06 s for white matter (WM) and 1.92 +/- 0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min the T-1 values obtained (0.81 +/- 0.03 S for WM and 1.35 +/- 0.05 for GM) were once again found to be in very good agreement with values in the literature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60-80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.
Resumo:
BACKGROUND: The diagnosis of hypertension in children is difficult because of the multiple sex-, age-, and height-specific thresholds to define elevated blood pressure (BP). Blood pressure-to-height ratio (BPHR) has been proposed to facilitate the identification of elevated BP in children. OBJECTIVE: We assessed the performance of BPHR at a single screening visit to identify children with hypertension that is sustained elevated BP. METHOD: In a school-based study conducted in Switzerland, BP was measured at up to three visits in 5207 children. Children had hypertension if BP was elevated at the three visits. Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) for the identification of hypertension were assessed for different thresholds of BPHR. The ability of BPHR at a single screening visit to discriminate children with and without hypertension was evaluated with receiver operating characteristic (ROC) curve analyses. RESULTS: The prevalence of systolic/diastolic hypertension was 2.2%. Systolic BPHR had a better performance to identify hypertension compared with diastolic BPHR (area under the ROC curve: 0.95 vs. 0.84). The highest performance was obtained with a systolic BPHR threshold set at 0.80 mmHg/cm (sensitivity: 98%; specificity: 85%; PPV: 12%; and NPV: 100%) and a diastolic BPHR threshold set at 0.45 mmHg/cm (sensitivity: 79%; specificity: 70%; PPV: 5%; and NPV: 99%). The PPV was higher among tall or overweight children. CONCLUSION: BPHR at a single screening visit had a high performance to identify hypertension in children, although the low prevalence of hypertension led to a low PPV.
Resumo:
For free-breathing, high-resolution, three-dimensional coronary magnetic resonance angiography (MRA), the use of intravascular contrast agents may be helpful for contrast enhancement between coronary blood and myocardium. In six patients, 0.1 mmol/kg of the intravascular contrast agent MS-325/AngioMARK was given intravenously followed by double-oblique, free-breathing, three-dimensional inversion-recovery coronary MRA with real-time navigator gating and motion correction. Contrast-enhanced, three-dimensional coronary MRA images were compared with images obtained with a T2 prepulse (T2Prep) without exogenous contrast. The contrast-enhanced images demonstrated a 69% improvement in the contrast-to-noise ratio (6.6 +/- 1.1 vs. 11.1 +/- 2.5; P < 0.01) compared with the T2Prep approach. By using the intravascular agent, extensive portions (> 80 mm) of the native left and right coronary system could be displayed consistently with sub-millimeter in-plane resolution. The intravascular contrast agent, MS-325/AngioMARK, leads to a considerable enhancement of the blood/muscle contrast for coronary MRA compared with T2Prep techniques. The clinical value of the agent remains to be defined in a larger patient series. J. Magn. Reson. Imaging 1999;10:790-799.
Resumo:
The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.
Resumo:
BACKGROUND: Three-dimensional (3D) navigator-gated and prospectively corrected free-breathing coronary magnetic resonance angiography (MRA) allows for submillimeter image resolution but suffers from poor contrast between coronary blood and myocardium. Data collected over >100 ms/heart beat are also susceptible to bulk cardiac and respiratory motion. To address these problems, we examined the effect of a T2 preparation prepulse (T2prep) for myocardial suppression and a shortened acquisition window on coronary definition. METHODS AND RESULTS: Eight healthy adult subjects and 5 patients with confirmed coronary artery disease (CAD) underwent free-breathing 3D MRA with and without T2prep and with 120- and 60-ms data-acquisition windows. The T2prep resulted in a 123% (P<0. 001) increase in contrast-to-noise ratio (CNR). Coronary edge definition was improved by 33% (P<0.001). Acquisition window shortening from 120 to 60 ms resulted in better vessel definition (11%; P<0.001). Among patients with CAD, there was a good correspondence with disease. CONCLUSIONS: Free-breathing, T2prep, 3D coronary MRA with a shorter acquisition window resulted in improved CNR and better coronary artery definition, allowing the assessment of coronary disease. This approach offers the potential for free-breathing, noninvasive assessment of the major coronary arteries.
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.