887 resultados para Freedom lawsuits
Resumo:
Sport holds a special place in the national psyche of many nations with claims for sport being far reaching. More recently sport has been identified as a development and an educational tool in the areas of health and behaviour modification. Against the backdrop of the Close the Gap blueprint for Indigenous Australians and within the context of competing claims for sport, this paper discusses whether sport can genuinely contribute to community development in Indigenous Australian communities. Drawing on cases from sports-based programmes that spanned a 5-year research programme and informed by a theoretical framework inspired by Sen’s notion of ‘Development as Freedom’, this paper makes the case that sport can be a robust developmental tool capable of delivering social outcomes to marginalized communities.
Resumo:
The spin degree of freedom is largely disregarded in existing theories of the density-dependent optical properties of an interacting electron-hole plasma in quasiequilibrium. Here, we extended the pair equation, which is applicable to a bulk semiconductor at elevated temperatures, to calculate optical nonlinearities due to a spin-polarized plasma. We obtained agreement with recent circular dichroism data in laser-excited GaAs by using the plasma density alone as the fitting parameter. The simplicity of our theory, based on the analytical pair-equation formula, makes it ideal for conveniently modelling absorption in a carrier spin-polarized semiconductor.
Resumo:
Nature has used the all-alpha-polypeptide backbone of proteins to create a remarkable diversity of folded structures. Sequential patterns of 20 distinct amino adds, which differ only in their side chains, determine the shape and form of proteins. Our understanding of these specific secondary structures is over half a century old and is based primarily on the fundamental elements: the Pauling alpha-helix and beta-sheet. Researchers can also generate structural diversity through the synthesis of polypeptide chains containing homologated (omega) amino acid residues, which contain a variable number of backbone atoms. However, incorporating amino adds with more atoms within the backbone introduces additional torsional freedom into the structure, which can complicate the structural analysis. Fortunately, gabapentin (Gpn), a readily available bulk drug, is an achiral beta,beta-disubstituted gamma amino add residue that contains a cyclohexyl ring at the C-beta carbon atom, which dramatically limits the range of torsion angles that can be obtained about the flanking C-C bonds. Limiting conformational flexibility also has the desirable effect of increasing peptide crystallinity, which permits unambiguous structural characterization by X-ray diffraction methods. This Account describes studies carried out in our laboratory that establish Gpn as a valuable residue in the design of specifically folded hybrid peptide structures. The insertion of additional atoms into polypeptide backbones facilitates the formation of intramolecular hydrogen bonds whose directionality is opposite to that observed in canonical alpha-peptide helices. If hybrid structures mimic proteins and biologically active peptides, the proteolytic stability conferred by unusual backbones can be a major advantage in the area of medicinal chemistry. We have demonstrated a variety of internally hydrogen-bonded structures in the solid state for Gpn-containing peptides, including the characterization of the C-7 and C-9 hydrogen bonds, which can lead to ribbons in homo-oligomeric sequences. In hybrid alpha gamma sequences, district C-12 hydrogen-bonded turn structures support formation of peptide helices and hairpins in longer sequences. Some peptides that include the Gpn residue have hydrogen-bond directionality that matches alpha-peptide helices, while others have the opposite directionality. We expect that expansion of the polypeptide backbone will lead to new classes of foldamer structures, which are thus far unknown to the world of alpha-polypeptides. The diversity of internally hydrogen-bonded structures observed in hybrid sequences containing Gpn shows promise for the rational design of novel peptide structures incorporating hybrid backbones.
Resumo:
Subsurface geophysical surveys were carried out using a large range of methods in an unconfined sandstone aquifer in semiarid south-western Niger for improving both the conceptual model of water flow through the unsaturated zone and the parameterization of numerical a groundwater model of the aquifer. Methods included: electromagnetic mapping, electrical resistivity tomography (ERT), resistivity logging, time domain electromagnetic sounding (TDEM), and magnetic resonance sounding (MRS). Analyses of electrical conductivities, complemented by geochemical measurements, allowed us to identify preferential pathways for infiltration and drainage beneath gullies and alluvial fans. The mean water content estimated by MRS (13%) was used for computing the regional groundwater recharge from long-term change in the water table. The ranges in permeability and water content obtained with MRS allowed a reduction of the degree of freedom of aquifer parameters used in groundwater modelling.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
This paper compares closed-loop performance of seeker-based and radar-based estimators for surface-to-air interception through 6-degree-of-freedom simulation using proportional navigation guidance.Ground radar measurements are evader range, azimuth and elevation angles contaminated by Gaussian noise. Onboard seeker measurements are pursuer-evader relative range, range rate also contaminated by Gaussian noise. The gimbal angles and line-of-sight rates in the gimbal frame,contaminated by time-correlated non-Gaussian noise with realistic numerical values are also available as measurements. In both the applications, extended Kalman filter with Gaussian noise assumption are used for state estimation. For a typical engagement, it is found that,based on Monte Carlo studies, seeker estimator outperforms radar estimator in terms of autopilot demand and reduces the miss distance.Thus, a seeker estimator with white Gaussian assumption is found to be adequate to handle the measurements even in the presence of non-Gaussian correlated noise. This paper uses realistic numerical values of all noise parameters.
Resumo:
Geometric and structural constraints greatly restrict the selection of folds adapted by protein backbones, and yet, folded proteins show an astounding diversity in functionality. For structure to have any bearing on function, it is thus imperative that, apart from the protein backbone, other tunable degrees of freedom be accountable. Here, we focus on side-chain interactions, which non-covalently link amino acids in folded proteins to form a network structure. At a coarse-grained level, we show that the network conforms remarkably well to realizations of random graphs and displays associated percolation behavior. Thus, within the rigid framework of the protein backbone that restricts the structure space, the side-chain interactions exhibit an element of randomness, which account for the functional flexibility and diversity shown by proteins. However, at a finer level, the network exhibits deviations from these random graphs which, as we demonstrate for a few specific examples, reflect the intrinsic uniqueness in the structure and stability, and perhaps specificity in the functioning of biological proteins.
Resumo:
Acute intermittent porphyria (AIP, MIM #176000) is an inherited metabolic disease due to a partial deficiency of the third enzyme, hydroxymethylbilane synthase (HMBS, EC: 4.3.1.8), in the haem biosynthesis. Neurological symptoms during an acute attack, which is the major manifestation of AIP, are variable and relatively rare, but may endanger a patient's life. In the present study, 12 Russian and two Finnish AIP patients with severe neurological manifestations during an acute attack were studied prospectively from 1995 to 2006. Autonomic neuropathy manifested as abdominal pain (88%), tachycardia (94%), hypertension (75%) and constipation (88%). The most common neurological sign was acute motor peripheral neuropathy (PNP, 81%) often associated with neuropathic sensory loss (54%) and CNS involvement (85%). Despite heterogeneity of the neurological manifestations in our patients with acute porphyria, the major pattern of PNP associated with abdominal pain, dysautonomia, CNS involvement and mild hepatopathy could be demonstrated. If more strict inclusion criteria for biochemical abnormalities (>10-fold increase in excretion of urinary PBG) are applied, neurological manifestations in an acute attack are probably more homogeneous than described previously, which suggests that some of the neurological patients described previously may not have acute porphyria but rather secondary porphyrinuria. Screening for acute porphyria using urinary PBG is useful in a selected group of neurological patients with acute PNP or encephalopathy and seizures associated with pain and dysautonomia. Clinical manifestations and the outcome of acute attacks were used as a basis for developing a 30-score scale of the severity of an acute attack. This scale can easily be used in clinical practice and to standardise the outcome of an attack. Degree of muscle weakness scored by MRC, prolonged mechanical ventilation, bulbar paralysis, impairment of consciousness and hyponatraemia were important signs of a poor prognosis. Arrhythmia was less important and autonomic dysfunction, severity of pain and mental symptoms did not affect the outcome. The delay in the diagnosis and repeated administrations of precipitating factors were the main cause of proceeding of an acute attack into pareses and severe CNS involvement and a fatal outcome in two patients. Nerve conduction studies and needle EMG were performed in eleven AIP patients during an acute attack and/or in remission. Nine patients had severe PNP and two patients had an acute encephalopathy but no clinically evident PNP. In addition to axonopathy, features suggestive of demyelination could be demonstrated in patients with severe PNP during an acute attack. PNP with a moderate muscle weakness was mainly pure axonal. Sensory involvement was common in acute PNP and could be subclinical. Decreased conduction velocities with normal amplitudes of evoked potentials during acute attacks with no clinically evident PNP indicated subclinical polyneuropathy. Reversible symmetrical lesions comparable with posterior reversible encephalopathy syndrome (PRES) were revealed in two patients' brain CT or MRI during an acute attack. In other five patients brain MRI during or soon after the symptoms was normal. The frequency of reversible brain oedema in AIP is probably under-estimated since it may be short-lasting and often indistinguishable on CT or MRI. In the present study, nine different mutations were identified in the HMBS gene in 11 unrelated Russian AIP patients from North Western Russia and their 32 relatives. AIP was diagnosed in nine symptom-free relatives. The majority of the mutations were family-specific and confirmed allelic heterogeneity also among Russian AIP patients. Three mutations, c.825+5G>C, c.825+3_825+6del and c.770T>C, were novel. Six mutations, c.77G>A (p.R26H), c.517C>T (p.R173W), c.583C>T (p.R195C), c.673C>T (p.R225X), c.739T>C (p.C247R) and c.748G>C (p.E250A), have previously been identified in AIP patients from Western and other Eastern European populations. The effects of novel mutations were studied by amplification and sequencing of the reverse-transcribed total RNA obtained from the patients' lymphoblastoid or fibroblast cell lines. The mutations c.825+5G>C and c.770T>C resulted in varyable amounts of abnormal transcripts, r.822_825del (p.C275fsX2) and [r.770u>c, r.652_771del, r.613_771del (p.L257P, p.G218_L257del, p.I205_L257del)]. All mutations demonstrated low residual activities (0.1-1.3 %) when expressed in COS-1 cells confirming the causality of the mutations and the enzymatic defect of the disease. The clinical outcome, prognosis and correlation between the HMBS genotype and phenotype were studied in 143 Finnish and Russian AIP patients with ten mutations (c.33G>T, c.97delA, InsAlu333, p.R149X, p.R167W, p.R173W, p.R173Q, p.R225G, p.R225X, c.1073delA) and more than six patients in each group. The patients were selected from the pool of 287 Finnish AIP patients presented in a Finnish Porphyria Register (1966-2003) and 23 Russian AIP patients (diagnosed 1995-2003). Patients with the p.R167W and p.R225G mutations showed lower penetrance (19% and 11%) and the recurrence rate (33% and 0%) in comparison to the patients with other mutations (range 36 to 67% and 0 to 66%, respectively), as well as milder biochemical abnormalities [urinary porphobilinogen 47±10 vs. 163±21 mol/L, p<0.001; uroporphyrin 130±40 vs. 942±183 nmol/L, p<0.001] suggesting a milder form of AIP in these patients. Erythrocyte HMBS activity did not correlate with the porphobilinogen excretion in remission or the clinical of the disease. In all AIP severity patients, normal PBG excretion predicted freedom from acute attacks. Urinary PBG excretion together with gender, age at the time of diagnosis and mutation type could predict the likelihood of acute attacks in AIP patients.
Resumo:
The issue raised in this Letter is classical, not only in the sense of being nonquantum, but also in the sense of being quite ancient: which subset of 4 X 4 real matrices should be accepted as physical Mueller matrices in polarization optics? Nonquantum entanglement or inseparability between the polarization and spatial degrees of freedom of an electromagnetic beam whose polarization is not homogeneous is shown to provide the physical basis to resolve this issue in a definitive manner.
Resumo:
By using the Y(gl(m|n)) super Yangian symmetry of the SU(m|n) supersymmetric Haldane-Shastry spin chain, we show that the partition function of this model satisfies a duality relation under the exchange of bosonic and fermionic spin degrees of freedom. As a byproduct of this study of the duality relation, we find a novel combinatorial formula for the super Schur polynomials associated with some irreducible representations of the Y(gl(m|n)) Yangian algebra. Finally, we reveal an intimate connection between the global SU(m|n) symmetry of a spin chain and the boson-fermion duality relation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The polyamidoamide (PAMAM) class of dendrimers was one of the first dendrimers synthesized by Tomalia and co-workers at Dow. Since its discovery the PAMAMs have stimulated many discussions on the structure and dynamics of such hyperbranched polymers. Many questions remain open because the huge conformation disorder combined with very similar local symmetries have made it difficult to characterize experimentally at the atomistic level the structure and dynamics of PAMAM dendrimers. The higher generation dendrimers have also been difficult to characterize computationally because of the large size (294852 atoms for generation 11) and the huge number of conformations. To help provide a practical means of atomistic computational studies, we have developed an atomistically informed coarse-grained description for the PAMAM dendrimer. We find that a two-bead per monomer representation retains the accuracy of atomistic simulations for predicting size and conformational complexity, while reducing the degrees of freedom by tenfold. This mesoscale description has allowed us to study the structural properties of PAMAM dendrimer up to generation 11 for time scale of up to several nanoseconds. The gross properties such as the radius of gyration compare very well with those from full atomistic simulation and with available small angle x-ray experiment and small angle neutron scattering data. The radial monomer density shows very similar behavior with those obtained from the fully atomistic simulation. Our approach to deriving the coarse-grain model is general and straightforward to apply to other classes of dendrimers.
Resumo:
Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.
Resumo:
Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We evaluate the bit error performance of the detector and show that it effectively cancels the CDI and achieves improved error performance. Our results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affect the bit error performance of the system.
Resumo:
Deep packet inspection is a technology which enables the examination of the content of information packets being sent over the Internet. The Internet was originally set up using “end-to-end connectivity” as part of its design, allowing nodes of the network to send packets to all other nodes of the network, without requiring intermediate network elements to maintain status information about the transmission. In this way, the Internet was created as a “dumb” network, with “intelligent” devices (such as personal computers) at the end or “last mile” of the network. The dumb network does not interfere with an application's operation, nor is it sensitive to the needs of an application, and as such it treats all information sent over it as (more or less) equal. Yet, deep packet inspection allows the examination of packets at places on the network which are not endpoints, In practice, this permits entities such as Internet service providers (ISPs) or governments to observe the content of the information being sent, and perhaps even manipulate it. Indeed, the existence and implementation of deep packet inspection may challenge profoundly the egalitarian and open character of the Internet. This paper will firstly elaborate on what deep packet inspection is and how it works from a technological perspective, before going on to examine how it is being used in practice by governments and corporations. Legal problems have already been created by the use of deep packet inspection, which involve fundamental rights (especially of Internet users), such as freedom of expression and privacy, as well as more economic concerns, such as competition and copyright. These issues will be considered, and an assessment of the conformity of the use of deep packet inspection with law will be made. There will be a concentration on the use of deep packet inspection in European and North American jurisdictions, where it has already provoked debate, particularly in the context of discussions on net neutrality. This paper will also incorporate a more fundamental assessment of the values that are desirable for the Internet to respect and exhibit (such as openness, equality and neutrality), before concluding with the formulation of a legal and regulatory response to the use of this technology, in accordance with these values.
Resumo:
In late 2010, the online nonprofit media organization WikiLeaks published classified documents detailing correspondence between the U.S. State Department and its diplomatic missions around the world, numbering around 250,000 cables. These diplomatic cables contained classified information with comments on world leaders, foreign states, and various international and domestic issues. Negative reactions to the publication of these cables came from both the U.S. political class (which was generally condemnatory of WikiLeaks, invoking national security concerns and the jeopardizing of U.S. interests abroad) and the corporate world, with various companies ceasing to continue to provide services to WikiLeaks despite no legal measure (e.g., a court injunction) forcing them to do so. This article focuses on the legal remedies available to WikiLeaks against this corporate suppression of its speech in the U.S. and Europe since these are the two principle arenas in which the actors concerned are operating. The transatlantic legal protection of free expression will be considered, yet, as will be explained in greater detail, the legal conception of this constitutional and fundamental right comes from a time when the state posed the greater threat to freedom. As a result, it is not generally enforceable against private, non-state entities interfering with speech and expression which is the case here. Other areas of law, namely antitrust/competition, contract and tort will then be examined to determine whether WikiLeaks and its partners can attempt to enforce their right indirectly through these other means. Finally, there will be some concluding thoughts about the implications of the corporate response to the WikiLeaks embassy cables leak for freedom of expression online.