901 resultados para Forecast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of kilometre-scale ensembles in operational forecasting provides new challenges for forecast interpretation and evaluation to account for uncertainty on the convective scale. A new neighbourhood based method is presented for evaluating and characterising the local predictability variations from convective scale ensembles. Spatial scales over which ensemble forecasts agree (agreement scales, S^A) are calculated at each grid point ij, providing a map of the spatial agreement between forecasts. By comparing the average agreement scale obtained from ensemble member pairs (S^A(mm)_ij), with that between members and radar observations (S^A(mo)_ij), this approach allows the location-dependent spatial spread-skill relationship of the ensemble to be assessed. The properties of the agreement scales are demonstrated using an idealised experiment. To demonstrate the methods in an operational context the S^A(mm)_ij and S^A(mo)_ij are calculated for six convective cases run with the Met Office UK Ensemble Prediction System. The S^A(mm)_ij highlight predictability differences between cases, which can be linked to physical processes. Maps of S^A(mm)_ij are found to summarise the spatial predictability in a compact and physically meaningful manner that is useful for forecasting and for model interpretation. Comparison of S^A(mm)_ij and S^A(mo)_ij demonstrates the case-by-case and temporal variability of the spatial spread-skill, which can again be linked to physical processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer and autumn of 2015, El Niño conditions in the east and central Pacific strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during the summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work, providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015, SON 2015 and DJF 2015/2016, a detailed monthly outlook from 5 modeling centres for Mar 2016 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of AM 2016 and JJA 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts. This report has been produced by University of Reading for Evidence on Demand with the assistance of the UK Department for International Development (DFID) contracted through the Climate, Environment, Infrastructure and Livelihoods Professional Evidence and Applied Knowledge Services (CEIL PEAKS) programme, jointly managed by DAI (which incorporates HTSPE Limited) and IMC Worldwide Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decadal predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy and society. The present study examines the decadal predictability of regional wind speed and wind energy potentials in three generations of the MiKlip (‘Mittelfristige Klimaprognosen’) decadal prediction system. The system is based on the global Max-Planck-Institute Earth System Model (MPI-ESM), and the three generations differ primarily in the ocean initialisation. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess the forecast skill for 10 m wind speeds and wind energy output (Eout) over Central Europe with lead times from one year to one decade. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD-simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. This forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skills of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer and persist longest in autumn. A large-scale westerly weather type with strong pressure gradients over Central Europe is identified as potential source of the skill for wind energy potentials, showing a similar forecast skill and a high correlation with Eout anomalies. These results are promising towards the establishment of a decadal prediction system for wind energy applications over Central Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyja allajökull eruption during the period from 7 to 16 May 2010. We find that at the start of this period, 7–10 May, the model (FLEXible PARTicle) has excellent skill and can predict the spatial distribution of the satellite-retrieved ash to within 0.5∘ × 0.5∘ latitude/longitude. However, on 10 May there is a decrease in the spatial accuracy of the model to 2.5∘× 2.5∘ latitude/longitude, and between 11 and 12 May the simulated ash location errors grow rapidly. On 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to key points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty, and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the “truth” disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmosphere only and ocean only variational data assimilation (DA) schemes are able to use window lengths that are optimal for the error growth rate, non-linearity and observation density of the respective systems. Typical window lengths are 6-12 hours for the atmosphere and 2-10 days for the ocean. However, in the implementation of coupled DA schemes it has been necessary to match the window length of the ocean to that of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a more balanced coupled state. This paper investigates how extending the window length in the presence of model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA with differing degrees of coupling. Results are illustrated using an idealized single column model of the coupled atmosphere-ocean system. It is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled analysis at the initial time, due to faster error growth in the coupled system. However, this does not necessarily lead to a more accurate forecast due to imbalances in the coupled state. Instead coupled DA is more able to update the initial state to reduce the impact of the model error on the accuracy of the forecast. The effect of model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency between the coupled model used in the outer loop and uncoupled models used in the inner loop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Plant–Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant–Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant–Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weather conditions in critical periods of the vegetative crop development influence crop productivity, thus being a basic parameter for crop forecast. Reliable extended period weather forecasts may contribute to improve the estimation of agricultural productivity. The production of soybean plays an important role in the Brazilian economy, because this country is ranked among the largest producers of soybeans in the world. This culture can be significantly affected by water conditions, depending on the intensity of water deficit. This work explores the role of extended period weather forecasts for estimating soybean productivity in the southern part of Brazil, Passo Fundo, and Londrina (State of Rio Grande do Sul and Parana, respectively) in the 2005/2006 harvest. The goal was to investigate the possible contribution of precipitation forecasts as a substitute for the use of climatological data on crop forecasts. The results suggest that the use of meteorological forecasts generate more reliable productivity estimates during the growth period than those generated only through climatological information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cutoff lows (COLs) pressure systems climatology for the Southern Hemisphere (SH), between 10 degrees S and 50 degrees S, using the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and the ERA-40 European Centre for Medium Range Weather Forecast (ECMWF) reanalyses are analyzed for the period 1979-1999. COLs were identified at three pressure levels (200, 300, and 500 hPa) using an objective method that considers the main physical characteristics of the conceptual model of COLs. Independently of the pressure level analyzed, the climatology from the ERA-40 reanalysis has more COLs systems than the NCEP-NCAR. However, both reanalyses present a large frequency of COLs at 300 hPa, followed by 500 and 200 hPa. The seasonality of COLs differs at each pressure level, but it is similar between the reanalyses. COLs are more frequent during summer, autumn, and winter at 200, 300, and 500 hPa, respectively. At these levels, they tend to occur around the continents, preferentially from southeastern Australia to New Zealand, the south of South America, and the south of Africa. To study the COLs at 200 and 300 hPa from a regional perspective, the SH was divided in three regions: Australia-New Zealand (60 E-130 W), South America (130 degrees W-20 degrees W), and southern Africa (20 degrees W-60 degrees E). The common COLs features in these sectors for both reanalyses are a short lifetime (similar to 80.0% and similar to 70.0% of COLs at 200 and 300 hPa, respectively, persisting for up to 3 days), mobility (similar to 70.0% and similar to 50% of COLs at 200 and 300 hPa, respectively, traveling distances of up to 1200 km), and an eastward propagation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analysis of ground-based Aerosol Optical Depth (AOD) observations by the Aerosol Robotic Network (AERONET) in South America from 2001 to 2007 in comparison with the satellite AOD product of Moderate Resolution Imaging Spectroradiometer (MODIS), aboard TERRA and AQUA satellites. Data of 12 observation sites were used with primary interest in AERONET sites located in or downwind of areas with high biomass burning activity and with measurements available for the full time range. Fires cause the predominant carbonaceous aerosol emission signal during the dry season in South America and are therefore a special focus of this study. Interannual and seasonal behavior of the observed AOD at different sites were investigated, showing clear differences between purely fire and urban influenced sites. An intercomparison of AERONET and MODIS AOD annual correlations revealed that neither an interannual long-term trend may be observed nor that correlations differ significantly owing to different overpass times of TERRA and AQUA. Individual anisotropic representativity areas for each AERONET site were derived by correlating daily AOD of each site for all years with available individual MODIS AOD pixels gridded to 1 degrees x 1 degrees. Results showed that for many sites a good AOD correlation (R(2) > 0.5) persists for large, often strongly anisotropic, areas. The climatological areas of common regional aerosol regimes often extend over several hundreds of kilometers, sometimes far across national boundaries. As a practical application, these strongly inhomogeneous and anisotropic areas of influence are being implemented in the tropospheric aerosol data assimilation system of the Coupled Chemistry-Aerosol-Tracer Transport Model coupled to the Brazilian Regional Atmospheric Modeling System (CCATT-BRAMS) at the Brazilian National Institute for Space Research (INPE). This new information promises an improved exploitation of local site sampling and, thus, chemical weather forecast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trafikverket, är den statliga verksamhet som har hand om alla Sveriges vägar och järnvägar har den så kallade nollvisionen som ett huvudmål. Tanken bakom nollvisionen är att de som använder vägarna skall vara säkra och inte komma till skada. En del av uppfyllandet av detta mål är att Trafikverket ger ut korttidsprognoser för väglag och körförhållande. I nuläget så används ett mycket manuellt systemet som heter NTIS, men man håller på att utveckla det nya automatiska systemet RCC som skall kunna ta fram korttidsprognoser baserat på olika former av data, t.ex. data från väderstationer. Syftet med denna studie är att utvärdera hur väl de två olika systemen utför en korttidsprognos och jämföra de mot varandra, samt verkligheten. Denna studie gjordes i form av en förklarande fallstudie. Som datainsamling används dokument i olika former och analysen var kvantitativ då resultatet av utvärdering ger olika procenttal av hur rätt respektive system har. Under undersökningen gång så kom vi fram till att båda systemen hade sina fördelar och nackdelar. T.ex. så det gamla NTIS systemet fortfarande bäst på isigt och moddigt väglag. Medans det nya RCC systemet hade sina egna fördelar, t.ex. snöigt väglag och vått väglag. Samt så hade RCC en klar fördel med sin rapporteringstid, vilket var ett problem man såg med NTIS. Resultat var som sagt ett procenttal av hur rätt de två olika systemen hade, men även förslag till förbättringar. T.ex. hur man skulle kunna ändra RCC regler för bättre resultat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renewable energy production is a basic supplement to stabilize rapidly increasing global energy demand and skyrocketing energy price as well as to balance the fluctuation of supply from non-renewable energy sources at electrical grid hubs. The European energy traders, government and private company energy providers and other stakeholders have been, since recently, a major beneficiary, customer and clients of Hydropower simulation solutions. The relationship between rainfall-runoff model outputs and energy productions of hydropower plants has not been clearly studied. In this research, association of rainfall, catchment characteristics, river network and runoff with energy production of a particular hydropower station is examined. The essence of this study is to justify the correspondence between runoff extracted from calibrated catchment and energy production of hydropower plant located at a catchment outlet; to employ a unique technique to convert runoff to energy based on statistical and graphical trend analysis of the two, and to provide environment for energy forecast. For rainfall-runoff model setup and calibration, MIKE 11 NAM model is applied, meanwhile MIKE 11 SO model is used to track, adopt and set a control strategy at hydropower location for runoff-energy correlation. The model is tested at two selected micro run-of-river hydropower plants located in South Germany. Two consecutive calibration is compromised to test the model; one for rainfall-runoff model and other for energy simulation. Calibration results and supporting verification plots of two case studies indicated that simulated discharge and energy production is comparable with the measured discharge and energy production respectively.