908 resultados para Flow injection analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variable Speed Limits (VSL) is a control tool of Intelligent Transportation Systems (ITS) which can enhance traffic safety and which has the potential to contribute to traffic efficiency. This study presents the results of a calibration and operational analysis of a candidate VSL algorithm for high flow conditions on an urban motorway of Queensland, Australia. The analysis was done using a framework consisting of a microscopic simulation model combined with runtime API and a proposed efficiency index. The operational analysis includes impacts on speed-flow curve, travel time, speed deviation, fuel consumption and emission.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Condition monitoring of diesel engines can prevent unpredicted engine failures and the associated consequence. This paper presents an experimental study of the signal characteristics of a 4-cylinder diesel engine under various loading conditions. Acoustic emission, vibration and in-cylinder pressure signals were employed to study the effectiveness of these techniques for condition monitoring and identifying symptoms of incipient failures. An event driven synchronous averaging technique was employed to average the quasi-periodic diesel engine signal in the time domain to eliminate or minimize the effect of engine speed and amplitude variations on the analysis of condition monitoring signal. It was shown that acoustic emission (AE) is a better technique than vibration method for condition monitor of diesel engines due to its ability to produce high quality signals (i.e., excellent signal to noise ratio) in a noisy diesel engine environment. It was found that the peak amplitude of AE RMS signals correlating to the impact-like combustion related events decreases in general due to a more stable mechanical process of the engine as the loading increases. A small shift in the exhaust valve closing time was observed as the engine load increases which indicates a prolong combustion process in the cylinder (to produce more power). On the contrary, peak amplitudes of the AE RMS attributing to fuel injection increase as the loading increases. This can be explained by the increase fuel friction caused by the increase volume flow rate during the injection. Multiple AE pulses during the combustion process were identified in the study, which were generated by the piston rocking motion and the interaction between the piston and the cylinder wall. The piston rocking motion is caused by the non-uniform pressure distribution acting on the piston head as a result of the non-linear combustion process of the engine. The rocking motion ceased when the pressure in the cylinder chamber stabilized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behavior of plane fountains, resulting from the injection of dense fluid (water) upwards into a large container of homogeneous fluid of lower density (air),was investigated. In this study the behavior of fountains was examined numerically and experimentally for different Froude and Reynolds numbers. The flow rate and nozzle diameter of the inlet of the fountain was varied to cover a wide range of Reynolds and Froude numbers. The effect of inclination angle of the inlet for different nozzle diameter and flow rate on fountain behavior was observed. It was found that the height of the fountain greatly depends on Froude number. An empirical correlation was developed for non-dimensional fountain height with Froude number. However the non-dimensional fountain height can more accurately be represented when regressed with both Reynolds and Froude number by the following relationship H/r=exp(5.94)*Re^-0.72*Fr^2.26. The result are compared with previous numerical and experimental results and found to be consistent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a model for generating a MAC tag with a stream cipher using the input message indirectly. Several recent proposals represent instances of this model with slightly different options. We investigate the security of this model for different options, and identify cases which permit forgery attacks. Based on this, we present a new forgery attack on version 1.4 of 128-EIA3. Design recommendations to enhance the security of proposals following this general model are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural convection thermal boundary layer adjacent to the heated inclined wall of a right angled triangle with an adiabatic fin attached to that surface is investigated by numerical simulations. The finite volume based unsteady numerical model is adopted for the simulation. It is revealed from the numerical results that the development of the boundary layer along the inclined surface is characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady stage. These three stages can be clearly identified from the numerical simulations. Moreover, in presence of adiabatic fin, the thermal boundary layer adjacent to the inclined wall breaks initially. However, it is reattached with the downstream boundary layer next to the fin. More attention has been given to the boundary layer development near the fin area.