998 resultados para Florida Citrus Exchange.
Resumo:
Concentrations of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) are highly variable in time and space. What is driving the variability in DMS(P), and can those variability be explained by physical processes and changes in the biological community? During the Southern Ocean Gas Exchange Experiment (SO GasEx) in the austral fall of 2008, two 3He/SF6 labeled patches were created in the surface water. SF6 and DMS were surveyed continuously in a Lagrangian framework, while direct measurements of air-sea exchange further constrained the gas budgets. Turbulent diffusivity at the base of the mixed layer was estimated from SF6 profiles and used to calculate the vertical fluxes of DMS and nutrients. Increasing mixed layer nutrient concentrations due to mixing were associated with a shift in the phytoplankton community structure, which in turned likely affected the sulfur dynamics on timescales of days. DMS concentration as well as air-sea DMS flux appeared to be decoupled from the DMSP concentration, possibly due to grazing and bacterial DMS production. Contrary to expectations, in an environment with high winds and modest productivity, physical processes (air-sea exchange, photochemistry, vertical mixing) only accounted for a small fraction of DMS loss from the surface water. Among the DMS sinks, inferred biological consumption most likely dominated during SO GasEx.
Resumo:
Many of the reactive trace gases detected in the atmosphere are both emitted from and deposited to the global oceans via exchange across the air–sea interface. The resistance to transfer through both air and water phases is highly sensitive to physical drivers (waves, bubbles, films, etc.), which can either enhance or suppress the rate of diffusion. In addition to outlining the fundamental processes controlling the air–sea gas exchange, the authors discuss these drivers, describe the existing parameterizations used to predict transfer velocities, and summarize the novel techniques for measuring in situ exchange rates. They review trace gases that influence climate via radiative forcing (greenhouse gases), those that can alter the oxidative capacity of the atmosphere (nitrogen- and sulfur-containing gases), and those that impact ozone levels (organohalogens), both in the troposphere and stratosphere. They review the known biological and chemical routes of production and destruction within the water column for these gases, whether the ocean acts as a source or sink, and whether temporal and spatial variations in saturation anomalies are observed. A current estimate of the marine contribution to the total atmospheric flux of these gases, which often highlights the significance of the oceans in biogeochemical cycling of trace gases, is provided, and how air–sea gas fluxes may change in the future is briefly assessed.
Resumo:
This chapter contains sections titled: Introduction Air-Sea Gas Exchange Models and Theory Laboratory Studies of Air-Water Gas Exchange Large-Scale Estimates of Air-Sea Gas Transfer Local Techniques and Measurements Micrometeorological Techniques and Measurements Parameterizations of Air-Sea Gas Transfer Future Work
Resumo:
The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent.
Resumo:
The air-sea fluxes of methanol and acetone were measured concurrently using a proton-transfer-reaction mass spectrometer (PTR-MS) with the eddy covariance (EC) technique during the High Wind Gas Exchange Study (HiWinGS) in 2013. The seawater concentrations of these compounds were also measured twice daily with the same PTR-MS coupled to a membrane inlet. Dissolved concentrations near the surface ranged from 7 to 28 nM for methanol and from 3 to 9 nM for acetone. Both gases were consistently transported from the atmosphere to the ocean as a result of their low sea surface saturations. The largest influxes were observed in regions of high atmospheric concentrations and strong winds (up to 25 m s(-1)). Comparison of the total air-sea transfer velocity of these two gases (K-a), along with the in situ sensible heat transfer rate, allows us to constrain the individual gas transfer velocity in the air phase (k(a)) and water phase (k(w)). Among existing parameterizations, the scaling of k(a) from the COARE model is the most consistent with our observations. The k(w) we estimated is comparable to the tangential (shear driven) transfer velocity previously determined from measurements of dimethyl sulfide. Lastly, we estimate the wet deposition of methanol and acetone in our study region and evaluate the lifetimes of these compounds in the surface ocean and lower atmosphere with respect to total (dry plus wet) atmospheric deposition.
Resumo:
The dynamical link between the Indian Ocean and Atlantic Meridional Overturning Circulation (AMOC) remains poorly understood. This partly arises from the complex Agulhas leakage, which occurs via rings, cyclones, and non-eddy flux. Hindcast simulations suggest that leakage has recently increased but have not decomposed this signal into its constituent mechanisms. Here these are isolated in a realistic ocean model. Increases in simulated leakage are attributed to stronger eddy and non-eddy-driven transports, and a strong warming and salinification, especially within Agulhas rings. Variability in both regimes is associated with strengthening Indian Ocean westerly winds, reflecting an increasingly positive Southern Annular Mode. While eddy and non-eddy flux signals are tied through turbulent eddy dissipation, the ratio between the two varies decadally. Consequently, while altimetry suggests a recent increase in retroflection turbulence and implied leakage, non-eddy flux may also play a significant role in modulating the leakage AMOC connection.
Resumo:
The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.
Resumo:
Food is one of the main exogenous sources of genotoxic compounds. In heated food products, polycyclic aromatic hydrocarbons (PAHs) represent a priority group of genotoxic, mutagenic and/or carcinogenic chemical pollutants with adverse long-term health effects. People can be exposed to these compounds through different environments and via various routes: inhalation, ingestion of foods and water and even percutaneously. The presence of these compounds in food may be due to environmental contamination, to industrial handling and processing of foods and to oil processing and refining. The highest levels of these compounds are found in smoked foods, in seafood which is found in polluted waters, in grilled meats and, to a lesser extent, in vegetable fats and oils. Lower levels of PAHs are found in vegetables and in cereals and its products.
Resumo:
This paper presents evidence that the bid-ask spreads in euro rates increased relative to the corresponding bid-ask spreads in the German mark (DM) prior to the creation of the currency union. This comes with a decrease in transaction volume in the euro rates relative to the previous DM rates. The starkest example is the DM(euro)/yen rate in which the spread has risen by almost two-thirds while the volume decreased by more than one third. This outcome is surprising because the common currency concentrated market liquidity in fewer external euro rates and higher volume tends to be associated with lower spreads. We propose a microstructure explanation based on a change in the information environment of the FX market. The elimination of many cross currency pairs increased the market transparency for order flow imbalances in the dealership market. It is argued that higher market transparency adversely affects the inventory risk sharing efficiency of the dealership market and induces the observed euro spread increase and transaction volume shortfall.
Resumo:
Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exchange in collisions between fully ionized helium and target gasses characteristic of cometary and planetary atmospheres (H2O, CO2, CO, and CH4). The experiments were performed at velocities typical for the solar wind (200-1500 km s(-1)). Data sets are produced that can be used for modeling the interaction of solar wind alpha particles with cometary and planetary atmospheres. These data sets are used to demonstrate the diagnostic potential of helium line emission. Existing Extreme Ultraviolet Explorer (EUVE) observations of comets Hyakutake and Hale-Bopp are analyzed in terms of solar wind and coma characteristics. The case of Hale-Bopp illustrates well the dependence of the helium line emission to the collision velocity. For Hale-Bopp, our model requires low velocities in the interaction zone. We interpret this as the effect of severe post-bow shock cooling in this extraordinary large comet.