957 resultados para Flame tetra
Resumo:
In this paper, coupled fire and evacuation simulation tools are used to simulate the Station Nightclub fire. This study differs from the analysis conducted by NIST in three key areas; (1)an enhanced flame spread model and (2)a toxicity generation model are used, (3)the evacuation is coupled to the fire simulation. Predicted early burning locations in the full-scale fire simulation are in line with photographic evidence and the predicted onset of flashover is similar to that produced by NIST. However, it is suggested that both predictions of the flashover time are approximately 15 sec earlier than actually occurred. Three evacuation scenarios are then considered, two of which are coupled with the fire simulation. The coupled fire and evacuation simulation suggests that 180 fatalities result from a building population of 460. With a 15 sec delay in the fire timeline, the evacuation simulation produces 84 fatalities which are in good agreement with actual number of fatalities. An important observation resulting from this work is that traditional fire engineering ASET/RSET calculations which do not couple the fire and evacuation simulations have the potential to be considerably over optimistic in terms of the level of safety achieved by building designs.
Resumo:
In this paper we investigate a number of gas flames for fire polishing borosilicate glass capillaries used in the manufacturing of IVF micro-pipettes. Hydrofluoric acid (HF) was also used as an alternative to finish the pipette end. Glass micro tools in the IVF industry are drawn from hollow glass capillaries of diameter 1 mm. These capillaries are cut manually to a length of 100 mm from hollow glass rods resulting in sharp and chipped edges. These capillaries are held in a customised holder having padding of soft silicone or rubber. Sharp and uneven edges of these capillaries pick up particles of rubber or soft silicone shavings, rendering them ineffective for IVF treatments. The working range of borosilicate glass is 800-1,200 degrees C. The experiments involved analysis of fire polishing process for borosilicate glass capillaries using candle, butane, propane, 2350 butane propane, oxyacetylene gas flames, finding the optimum distance of the capillary relative to the flame, optimum time for which the capillary should be held in the flame and optimum region of the flame which gives the required temperature range. The results show that 2350 butane propane gas mix is optimum for fire polishing of borosilicate glass capillaries. The paper is concluded by comparing the results of fire polishing with the results of acid polishing, in which HF of 1.6% concentration is used to etch the ends of the borosilicate glass pipettes.
Resumo:
The role of the ocean in the cycling of oxygenated volatile organic compounds (OVOCs) remains largely unanswered due to a paucity of datasets. We describe the method development of a membrane inlet-proton transfer reaction/mass spectrometer (MI-PTR/MS) as an efficient method of analysing methanol, acetaldehyde and acetone in seawater. Validation of the technique with water standards shows that the optimised responses are linear and reproducible. Limits of detection are 27 nM for methanol, 0.7 nM for acetaldehyde and 0.3 nM for acetone. Acetone and acetaldehyde concentrations generated by MI-PTR/MS are compared to a second, independent method based on purge and trap-gas chromatography/flame ionisation detection (P&T-GC/FID) and show excellent agreement. Chromatographic separation of isomeric species acetone and propanal permits correction to mass 59 signal generated by the PTR/MS and overcomes a known uncertainty in reporting acetone concentrations via mass spectrometry. A third bioassay technique using radiolabelled acetone further supported the result generated by this method. We present the development and optimisation of the MI-PTR/MS technique as a reliable and convenient tool for analysing seawater samples for these trace gases. We compare this method with other analytical techniques and discuss its potential use in improving the current understanding of the cycling of oceanic OVOCs.
Resumo:
A sampling and analytical system has been developed for shipboard measurements of high-resolution vertical profiles of the marine trace gas dimethylsulfide (DMS). The system consists of a tube attached to a CTD with a peristaltic pump on deck that delivers seawater to a membrane equilibrator and atmospheric pressure chemical ionization mass spectrometer (Eq-APCIMS). This allows profiling DMS concentrations to a depth of 50 m, with a depth resolution of 1.3-2 m and a detection limit of nearly 0.1 nmol L-1. The seawater is also plumbed to allow parallel operation of additional continuous instruments, and simultaneous collection of discrete samples for complementary analyses. A valve alternates delivery of seawater from the vertical profiler and the ship�s underway intake, thereby providing high-resolution measurements in both the vertical and horizontal dimensions. Tests conducted on various cruises in the Mediterranean Sea, Atlantic, Indian, and Pacific Oceans show good agreement between the Eq-APCIMS measurements and purge and trap gas chromatography with flame photometric detection (GC-FPD) and demonstrate that the delivery of seawater from the underway pump did not significantly affect endogenous DMS concentrations. Combination of the continuous flow DMS analysis with high-frequency hydrographic, optical, biological and meteorological measurements will greatly improve the spatial/temporal resolution of seagoing measurements and improve our understanding of DMS cycling.
Resumo:
Due to the impacts of natural processes and anthropogenic activities, different coastal wetlands are faced with variable patterns of heavy metal contamination. It is important to quantify the contributions of pollutant sources, in order to adopt appropriate protection measures for local ecosystems. The aim of this research was to compare the heavy metal contamination patterns of two contrasting coastal wetlands in eastern China. In addition, the contributions from various metal sources were identified and quantified, and influencing factors, such as the role of the plant Spartina alterniflora, were evaluated. Materials and methods Sediment samples were taken from two coastal wetlands (plain-type tidal flat at the Rudong (RD) wetland vs embayment-type tidal flat at Luoyuan Bay (LY)) to measure the content of Al, Fe, Co, Cr, Cu, Mn, Mo, Ni, Sr, Zn, Pb, Cd, and As. Inductively coupled plasma atomic emission spectrometry, flame atomic absorption spectrometry, and atomic fluorescence spectrometry methods were used for metal detection. Meanwhile, the enrichment factor and geoaccumulation index were applied to assess the pollution level. Principle component analysis and receptor modeling were used to quantify the sources of heavy metals. Results and discussion Marked differences in metal distribution patterns between the two systems were present. Metal contents in LY were higher than those in RD, except for Sr and Mo. The growth status of S. alterniflora influenced metal accumulations in RD, i.e., heavy metals were more easily adsorbed in the sediment in the following sequence: Cu > Cd > Zn > Cr > Al > Pb ≥ Ni ≥ Co > Fe > Sr ≥ Mn > As > Mo as a result of the presence and size of the vegetation. However, this phenomenon was not observed in LY. A higher potential ecological risk was associated with LY, compared with RD, except for Mo. Based on a receptor model output, sedimentary heavy metal contents at RD were jointly influenced by natural sedimentary processes and anthropogenic activities, whereas they were dominated by anthropogenic activities at LY. Conclusions A combination of geochemical analysis and modeling approaches was used to quantify the different types of natural and anthropogenic contributions to heavy metal contamination, which is useful for pollution assessments. The application of this approach reveals that natural and anthropogenic processes have different influences on the delivery and retention of metals at the two contrasting coastal wetlands. In addition, the presence and size of S. alterniflora can influence the level of metal contamination in sedimentary environments.
Resumo:
Abstract There is considerable interest in developing medical devices that provide controlled delivery of biologically active agents, for example, to reduce the incidence of device-related infection. Silicone elastomers are one of the commonest biomaterials used in medical device production. However, they have a relatively high coefficient of friction and the resulting lack of lubricity can cause pain and tissue damage on device insertion and removal. Novel silicone cross-linking agents have recently been reported that produce inherently ‘self-lubricating’ silicone elastomers with very low coefficients of friction. In this study, the model antibacterial drug metronidazole has been incorporated into these self-lubricating silicone elastomers to produce a novel bioactive biomaterial. The in vitro release characteristics of the bioactive component were evaluated as a function of cross-linker composition and drug loading. Although conventional matrix-type release kinetics were observed for metronidazole from the silicone systems, it was also observed that increasing the concentration of the cross-linking agent responsible for the lubricious character (tetra(oleyloxy)silane) relative to that of the standard non-lubricious cross-linking agent (tetrapropoxysilane) produced an increase in the metronidazole flux rate by up to 65% for a specified drug loading. The results highlight the potential for developing lubricious silicone medical devices with enhanced drug release characteristics.
Resumo:
Silicone has a relatively high coefficient of friction and silicone medical devices therefore lack inherent lubricity, leading to pain on device insertion and potential tissue trauma. In this study, higher molecular weight tetra(alkoxy) silanes, particularly tetra(oleyloxy) silane, have been used as crosslinkers in the condensation cure of a hydroxy end-functionalised linear poly(dimethylsiloxane). The resulting elastomers displayed a persistent lubricous surface of oleyl alcohol, and coefficients of friction (static and dynamic) approaching zero. Chemical structures of the synthesised silanes and surface alcohol exudate were confirmed by nuclear magnetic resonance spectroscopy. Mechanical properties of the elastomers, which were chemically identical to conventionally cured systems, suggested that an 80/20 mixture of tetra(oleyloxy) silane and tetra(propoxysilane) gave the best compromise between desirable mechanical and frictional properties.
Resumo:
The development of self-lubricating silicone elastomeric biomaterials, prepared using the novel crosslinking agent tetra( oleyloxy) silane and having very low coefficients of friction, has recently been reported. In this study, the in vitro release characteristics of lubricious oleyl alcohol produced during the silicone curing reaction have been quantitatively evaluated for a range of tetra( propoxy) silane/tetra(oleyloxy) silane crosslinker compositions using a novel evaporative light scattering detection method in combination with high performance liquid chromatography. The mechanism of oleyl alcohol release was seen to deviate from a simple, matrix-controlled diffusion process and instead obeyed an anomalous transport mechanism. An explanation for the observed release behaviour has been proposed based on competitive reaction kinetics between the tetra( oleyloxy) silane and tetra( propoxy) silane substituents of the silicone crosslinking agents.
Resumo:
Cyclododecane (CDD) is a waxy, solid cyclic hydrocarbon (C12H24) that sublimes at room temperature and possesses strong hydrophobicity. In paper conservation CDD is used principally as a temporary fixative of water-soluble media during aqueous treatments. Hydrophobicity, ease of reversibility, low toxicity, and absence of residues are reasons often cited for its use over alternative materials although the latter two claims continue to be debated in the literature. The sublimation rate has important implications for treatment planning as well as health and safety considerations given the dearth of reliable information on its toxicity and exposure limits. This study examined how the rate of sublimation is affected by fiber type, sizing, and surface finish as well as delivery in the molten phase and as a saturated solution in low boiling petroleum ether. The effect of warming the paper prior to application was also evaluated. Sublimation was monitored using gravimetric analysis after which samples were tested for residues with gas chromatography-flame ionization detection (GC-FID) to confirm complete sublimation. Water absorbency tests were conducted to determine whether this property is fully reestablished. Results suggested that the sublimation rate of CDD is affected minimally by all of the paper characteristics and application methods examined in this study. The main factors influencing the rate appear to be the thickness and mass of the CDD over a given surface area as well as temperature and ventilation. The GC-FID results showed that most of the CDD sublimed within several days of its disappearance from the paper surface regardless of the application method. Minimal changes occurred in the water absorbency of the samples following complete sublimation.
Resumo:
The fine structure of the excretory system in the juvenile (plerocercoid-like) form of Trilocularia acanthiaevulgaris is described. The flame cell bears a bunch of 50-70 cilia, which are anchored in the cytoplasm by means of basal bodies possessing striated rootlets. All the cilia in the
Resumo:
Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA) and preformed photosensitisers. In this study, we investigated the potential of jet injection to deliver both ALA and a preformed photosensitiser (meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, TMP) into a defined volume of skin. Initial studies using a model hydrogel showed that as standoff distance is increased, injection depth decreases. As the ejected volume is increased, injection depth increases. It was also shown, for the first time, that, as injection solution viscosity was increased, for a given injection setting and standoff distance, both total depth of jet penetration, L-t, and depth at which the maximum width of the penetration pattern occurred, L-m, decreased progressively. For a standoff distance of zero, the maximum width of the penetration pattern, L-w, increased progressively with increasing viscosity at each of the injection settings. Conversely, when the standoff distance was 2.5 mm, L-w decreased progressively with increasing viscosity. Studies with neonate porcine skin revealed that an injection protocol comprising an 8.98 mPas solution, an arbitrary injection setting of 8 and a standoff distance of zero was capable of delivering photosensitisers to a volume of tissue (L-t of 2.91 mm, L-m of 2.14 mm, L-w of 5. 10 mm) comparable to that occupied by a typical nodular basal cell carcinoma. Both ALA and TMP were successfully delivered using jet injection, with peak tissue concentrations (67.3 mg cm(-3) and 5.6 mg cm(-3), respectively) achieved at a depth of around 1.0 mm and substantial reductions in drug concentration seen at depths below 3.0 mm. Consequently, jet injection may be suitable for selective targeting of ALA or preformed photosensitisers to skin tumours. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to determine the effect of sub-lethal challenge with Photodynamic Antimicrobial Chemotherapy (PACT) on the susceptibility of clinical Staphylococcus aureus and Pseudomonas aeruginosa isolates to both PACT and a range of antibiotics used in the treatment of infection caused by these bacteria. Clinical S. aureus and P. aeruginosa isolates were exposed to sub-lethal PACT with meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP) and methylene blue (MB) over a 72 h period. After exposure, susceptibility of surviving organisms to a range of antibiotics was determined and compared with the susceptibility of an untreated control. Surviving bacteria were also exposed to previously lethal photosensitizer-light combinations, to determine if susceptibility to PACT was affected by sub-lethal exposure. Exposure to sub-lethal PACT did not decrease susceptibility to antibiotics with the minimum inhibitory concentrations for 95% and 100% of P. aeruginosa and S. aureus isolates, respectively, within two doubling dilutions of the MIC of the untreated control. Similarly, habituation with sub-lethal PACT did not reduce susceptibility of P. aeruginosa isolates to PACT levels previously determined as lethal. A reduction in susceptibility to PACT following habituation was apparent for two S. aureus isolates with MB and for 1 S. aureus isolate with IMP. However, for two of these three isolates, the log reduction for habituated cells was still greater than 4 log(10). PACT remains an attractive potential treatment for infection caused by these bacteria. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polyol sugars, displaying a plurality Of hydroxyl groups, were shown to modulate tetra hydroxyborate (borate) cross-linking in lidocaine hydrochloride containing poly(vinyl alcohol) scini-solid hydrogels. Without polyol, demixing of borate cross-linked PVA hydrogels into two distinct phases was noticeable upon lidocaine hydrochloride addition, preventing further use as a topical System. D-Mannitol incorporation was found to be particularly suitable in cicumventing network constriction induced by ionic and pH effects upon adding the hydrochloride salt of lidocaine. A test formulation (4% w/v lidocaine HCl, 2% W/V D-mannitol, 10% w/v PVA and 2.5%, w/v THB) was shown to constitute an effective delivery system, which was characterised by an initial burst release and a drug release mechanism dependent on temperature, changing from a diffusion-controlled system to one with the properties of a reservoir system. The novel flow properties and innocuous adhesion of PVA-tetrahydroxyborate hydrogels Support their application for drug delivery to exposed epithelial surfaces, Such as lacerated wounds. Furthermore, addition of a polyol, such as mannitol, allows incorporation of soluble salt forms of active therapeutic agents by modulation of cross-linking density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Since the early 1970s, the American electronic media artist Paul DeMarinis (b. 1948, Cleveland, Ohio, USA) has created works that re-imagine modes of communication and reinvent the technologies that enable communication. His works (see Table 1) have taken shape as recordings, performances, electronic inventions, and site-specific and interactive installations; many are considered landmarks in the histories of electronic music and media art. Paul DeMarinis pioneered live performance with computers, collaborated on landmark works with artists like David Tudor and Robert Ashley, undertook several tours with the Merce Cunningham Dance Company, and brought to life obscure technologies such as the flame loudspeaker (featured in his 2004 sculpture Firebirds). His interactive installation The Music Room (1982), commissioned by Frank Oppenheimer for the Exploratorium in San Francisco, was the first automatic music work to reach a significant audience. His album Music As A Second Language (1991) marks one of the most extensive explorations of the synthesized voice and speech melodies to date. Installations like The Edison Effect (1989-1993), in which lasers scan ancient recordings to produce music, and The Messenger (1998/2005), in which electronic mail messages are displayed on alphabetic telegraph receivers, illustrate a creative process that Douglas Kahn (1994) has called "reinventing invention." [etc]