966 resultados para Fine sandy soil


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine-particle NASICON materials, Na1+xZr2P3-xSixO12 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5), have been prepared by controlled combustion of an aqueous solution containing stoicthiometric amounts of sodium nitrate, zirconyl nitrate, ammonium perchlorate, diammonium hydrogen phosphate, fumed silica and carbonohydrazide. Formation of NASICON has been confirmed by powder XRD, Si-29 NMR and IR spectroscopy. These NASICON powders are fine (average agglomerate size 5-12 mum) with a surface area varying from 8 to 30 m2 g-1. NASICON powders pelletized and sintered at 1100-1200-degrees-C for 5 h achieved 90-95% theoretical density and show fine-grain microstructure. The coefficient of thermal expansion of sintered NASICON compact was measured up to 500-degrees-C and changes f rom -3.4 x 10(-6) to 4.1 x 10(-6) K-1. The conductivity of Sintered Na3Zr2PSi2O12 compact at 300-degrees-C is 0.236 OMEGA-1 cm-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barium metazirconate (BaZrO3) fine powder has been produced by thermally decomposing a molecular precursor, barium bis(citrato)oxozirconate(IV) tetrahydrate at about 700-degrees-C. The precursor, Ba[ZrO(C6H6O7)2] . 4H2O (BZO) has been synthesized and characterized by employing a combination of spectroscopic and thermoanalytical techniques. The precursor undergoes thermal decomposition in three major stages: (i) dehydration to give an anhydrous barium zirconyl citrate, (ii) decomposition of the anhydrous citrate in a multistep process to form an ionic oxycarbonate intermediate, Ba2Zr2O5CO3, and (iii) decomposition of the oxycarbonate to produce BaZrO3 fine powder. The particle size of the resultant BaZrO3 is about 0.2 mum, and the surface area is found to be 4.0 m2 g-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interaction analysis of an axially loaded single pile and pile group with and without a pile cap in a layered soil medium has been investigated using the two-dimensional photoelastic method. A study of the pile or pile group behaviour has been made, varying the pile cap thickness as well as the embedded length of the pile in the hard stratum. The shear stress distribution along the pile-soil interface, non-dimensionalized settlement values of the single pile and the interaction factor for the pile group have been presented. Wherever possible, the results of the present analysis have been compared with available numerical solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT (N-1)(60)] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters (N-1)(60) and peck ground acceleration (a(max)/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine powders of semiconductor oxides have been widely used as photocatalysts for many reactions. Among the various photocatalytic reactions, water splitting has been given much importance, since it is a promising chemical route for solar energy conversion. Perovskite oxides, in particular SrTiO, have been commonly used as photocatalysts because some of them can decompose H,O into H, and 0, without an external bias potential (1). In turn, this is because the conduction band (CB) edges of some of the perovskite oxides are more negative than the H+/H, energy level. Since the catalytic activity is related to the surface properties of the solids, fine powders rather than single crystals are used. Photocatalysis on fine powers can be conveniently discussed in three parts, viz. preparation, characterization and their catalytic activity. Presently, photo-decomposition of water using SrTiO, fine powders is discussed in greater detail, although other photocatalytic reactions on various perovskite oxides are also briefly dealt with.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that CdS nanocrystals can be thermodynamically stabilized in both wurtzite and zinc-blende crystallographic phases at will, just by the proper choice of the capping ligand. As a striking demonstration of this, the largest CdS nanocrystals (similar to 15 nm diameter) ever formed with the zinc-blende structure have been synthesized at a high reaction temperature of 310 degrees C, in contrast to previous reports suggesting the formation of zinc-blende CdS only in the small size limit (< 4.5 nm) or at a lower reaction temperature (<= 240 degrees C). Theoretical analysis establishes that the binding energy of trioctylphosphine molecules on the (001) surface of zinc-blende CdS is significantly larger than that for any of the wurtzite planes. Consequently, trioctylphosphine as a capping agent stabilizes the zinc-blende phase via influencing the surface energy that plays an important role in the overall energetics of a nanocrystal. Besides achieving giant zinc-blende CdS nanocrystals, this new understanding allows us to prepare CdSe and CdSe/CdS core/shell nanocrystals in the zinc-blende structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study concerns the effect of duration of load increment (up to 24 h) on the consolidation properties of expansive black cotton soil (liquid limit = 81%) and nonexpansive kaolinite (liquid limit = 49%). It indicates that the amount and rate of compression are not noticeably affected by the duration of loading for a standard sample of 25 mm in height and 76.2 mm in diameter with double drainage. Hence, the compression index and coefficient of consolidation can be obtained with reasonable accuracy even if the duration of each load increment is as short as 4 h. The secondary compression coefficient (C-alpha epsilon) for kaolinite can be obtained for any pressure range with 1/2 h of loading, which, however, requires 4 h for black cotton soil. This is because primary consolidation is completed early in the case of kaolinite. The paper proves that the conventional consolidation test can be carried out with much shorter duration of loading (less than 4 h) than the standard specification of 24 h or more even for remolded fine-grained soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a seepage barrier slurry trench material should have a relatively low coefficient of permeability, in the range of 10(-7) cm/s, and at the same time should be compatible with surrounding material with regard to compressibility. Although bentonite-sand/soil mixes are used widely, there is no specific engineering approach to proportion these mixes that satisfies the above practical requirements. In this paper, a generalized approach is presented for predicting the permeability and compressibility characteristics of mixes with minimum input parameters. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. It is possible to proportion a mix to arrive at the required compressibility without affecting the permeability. This is explained using an illustrative example.