859 resultados para Farmacologia cardiovascular
Resumo:
Arginine vasopressin (AVP) has been employed successfully during cardiopulmonary resuscitation, but there exist only few data about the effects of AVP infusion for cardiovascular failure during the post-cardiac arrest period. Cardiovascular failure is one of the main causes of death after successful resuscitation from cardiac arrest. Although the "post-resuscitation syndrome" has been described as a "sepsis-like" syndrome, there is little information about the haemodynamic response to AVP in advanced cardiovascular failure after cardiac arrest. In this retrospective study, haemodynamic and laboratory variables in 23 patients with cardiovascular failure unresponsive to standard haemodynamic therapy during the post-cardiac arrest period were obtained before, and 30 min, 1, 4, 12, 24, 48, and 72 h after initiation of a supplementary AVP infusion (4 IU/h). During the observation period, AVP significantly increased mean arterial blood pressure (58+/-14 to 75+/-19 mmHg, p < 0.001), and decreased noradrenaline (norepinephrine) (1.31+/-2.14 to 0.23+/-0.3 microg/kg/min, p = 0.03), adrenaline (epinephrine) (0.58+/-0.23 to 0.04+/-0.03 microg/kg/min, p = 0.001), and milrinone requirements (0.46+/-0.15 to 0.33+/-0.22 microg/kg/min, p < 0.001). Pulmonary capillary wedge pressure changed significantly (p < 0.001); an initial increase being followed by a decrease below baseline values. While arterial lactate concentrations (95+/-64 to 21+/-18 mg/dL, p < 0.001) and pH (7.27+/-0.14 to 7.4+/-0.14, p < 0.001) improved significantly, total bilirubin concentrations (1.12+/-0.95 to 3.04+/-3.79 mg/dL, p = 0.001) increased after AVP. There were no differences in the haemodynamic or laboratory response to AVP between survivors and non-survivors. In this study, advanced cardiovascular failure that was unresponsive to standard therapy could be reversed successfully with supplementary AVP infusion in >90% of patients surviving cardiac arrest.
Resumo:
Proteomics describes, analogous to the term genomics, the study of the complete set of proteins present in a cell, organ, or organism at a given time. The genome tells us what could theoretically happen, whereas the proteome tells us what does happen. Therefore, a genomic-centered view of biologic processes is incomplete and does not describe what happens at the protein level. Proteomics is a relatively new methodology and is rapidly changing because of extensive advances in the underlying techniques. The core technologies of proteomics are 2-dimensional gel electrophoresis, liquid chromatography, and mass spectrometry. Proteomic approaches might help to close the gap between traditional pathophysiologic and more recent genomic studies, assisting our basic understanding of cardiovascular disease. The application of proteomics in cardiovascular medicine holds great promise. The analysis of tissue and plasma/serum specimens has the potential to provide unique information on the patient. Proteomics might therefore influence daily clinical practice, providing tools for diagnosis, defining the disease state, assessing of individual risk profiles, examining and/or screening of healthy relatives of patients, monitoring the course of the disease, determining the outcome, and setting up individual therapeutic strategies. Currently available clinical applications of proteomics are limited and focus mainly on cardiovascular biomarkers of chronic heart failure and myocardial ischemia. Larger clinical studies are required to test whether proteomics may have promising applications for clinical medicine. Cardiovascular surgeons should be aware of this increasingly pertinent and challenging field of science.
Resumo:
BACKGROUND: The relationship between depression and the metabolic syndrome is unclear, and whether metabolic syndrome explains the association between depression and cardiovascular disease (CVD) risk is unknown. METHODS: We studied 652 women who received coronary angiography as part of the Women's Ischemia Syndrome Evaluation (WISE) study and completed the Beck Depression Inventory (BDI). Women who had both elevated depressive symptoms (BDI > or =10) and a previous diagnosis of depression were considered at highest risk, whereas those with one of the two conditions represented an intermediate group. The metabolic syndrome was defined according to the ATP-III criteria. The main outcome was incidence of adverse CVD events (hospitalizations for myocardial infarction, stroke, congestive heart failure, and CVD-related mortality) over a median follow-up of 5.9 years. RESULTS: After adjusting for demographic factors, lifestyle and functional status, both depression categories were associated with about 60% increased odds for metabolic syndrome compared with no depression (p = .03). The number of metabolic syndrome risk factors increased gradually across the three depression categories (p = .003). During follow-up, 104 women (15.9%) experienced CVD events. In multivariable analysis, women with both elevated symptoms and a previous diagnosis of depression had 2.6 times higher risk of CVD. When metabolic syndrome was added to the model, the risk associated with depression only decreased by 7%, and both depression and metabolic syndrome remained significant predictors of CVD. CONCLUSIONS: In women with suspected coronary artery disease, the metabolic syndrome is independently associated with depression but explains only a small portion of the association between depression and incident CVD.
Resumo:
Although experimental prevention studies have suggested therapeutic potential of endothelin (ET) antagonists for the treatment of heart failure, the results of clinical trials using ET antagonists on top of standard heart failure medications have been largely disappointing. This experimental study investigated the effects of chronic ET(A) receptor blockade in long-term survivors of myocardial infarction who had developed stable chronic heart failure in the absence of other treatments. Systolic blood pressure, heart rate, organ weights of the right atrium and ventricle, and the lungs were determined, and tissue ET-1 peptide levels were measured in cardiac tissue, lung, and aorta. The results show that chronic blockade of ET(A) receptors stabilizes systolic blood pressure and reverses the heart failure-induced weight increases of right heart chambers and lung. The changes observed occurred independently of tissue ET-1 concentrations and heart rate, suggesting mechanisms independent of local cardiac or pulmonary ET-1 synthesis, which are yet to be identified.
Resumo:
Obese persons suffer from an increased mortality risk supposedly due to cardiovascular disorders related to either continuously lowered parasympathetic or altered sympathetic activation. Our cross-sectional correlation study establishes the relationship between obesity and autonomic regulation as well as salivary cortisol levels. Three patient cohorts were sampled, covering ranges of body mass index (BMI) of 27-32 (n=17), 33-39 (n=13) and above 40 kg/m(2)(n=12), and stratified for age, sex and menopausal status. Autonomic cardiovascular regulation was assessed by use of heart rate variability and continuous blood pressure recordings. Spectral analytical calculation (discrete Fourier transformation) yields indices of sympathetic and parasympathetic activation and baroreflex sensitivity. Morning salivary cortisol was concurrently collected. Contrary to expectation, BMI and waist/hip ratio (WHR) were inversely correlated with sympathetic activity. This was true for resting conditions (r=-0.48, P<0.001; r=-0.33, P<0.05 for BMI and WHR respectively) and for mental challenge (r=-0.42, P<0.01 for BMI). Resting baroreflex sensitivity was strongly related to the degree of obesity at rest (BMI: r=-0.35, P<0.05) and for mental challenge (r=-0.53, P<0.001). Salivary cortisol correlated significantly with waist circumference (r=-0.34, P=0.05). With increasing weight, no overstimulation was found but a depression in sympathetic and parasympathetic activity together with a significant reduction in baroreflex functioning and in salivary cortisol levels.
Resumo:
Whether and to what extent activation of peripheral presynaptic dopamine2-receptors may modulate the release of norepinephrine (NE) and so affect blood pressure (BP) in normal or hypertensive man is not clear. The hydrogenated ergotoxine derivative, co-dergocrine, given in effective antihypertensive rather than excessive experimental doses, has recently been shown to act predominantly as a peripheral dopamine2-receptor agonist in several species. Accordingly, BP regulation assessed has been in 8 normal men on placebo and after 3 weeks on codergocrine 4 mg/day. Co-dergocrine significantly reduced urinary NE excretion from 43 to 33 micrograms/24 h, supine and upright plasma NE 21 to 16 and 49 to 36 ng/dl, respectively, heart rate (-8 and -5%, respectively) and upright systolic BP, 115 to 102 mm Hg; upright diastolic BP also tended to be lower. A standard pressor dose of infused NE was lowered from 131 to 102 ng/kg/min, and the relationship between NE-induced changes in BP and concomitant NE infusion rate or plasma NE concentration was displaced to the left. Exchangeable sodium and plasma volume tended to be slightly decreased. Plasma and urinary electrolytes and epinephrine, plasma renin activity and aldosterone levels, pressor responsiveness to angiotensin II, the chronotropic responses to isoproterenol, and the NE-induced rise in BP, plasma clearance of NE, glomerular filtration rate and effective renal plasma flow were not consistently modified. The findings are consistent with effective peripheral dopamine2-receptor agonism by co-dergocrine in humans. Peripheral presynaptic dopaminergic activation may modulate sympathetic activity and BP in normal man.