969 resultados para Fall program update (LACUNY Membership Drive)
Resumo:
A multilevel inverter topology for seven-level space vector generation is proposed in this paper. In this topology, the seven-level structure is realized using two conventional two-level inverters and six capacitor-fed H-bridge cells. It needs only two isolated dc-voltage sources of voltage rating V(dc)/2 where V(dc) is the dc voltage magnitude required by the conventional neutral point clamped (NPC) seven-level topology. The proposed topology is capable of maintaining the H-bridge capacitor voltages at the required level of V(dc)/6 under all operating conditions, covering the entire linear modulation and overmodulation regions, by making use of the switching state redundancies. In the event of any switch failure in H-bridges, this inverter can operate in three-level mode, a feature that enhances the reliability of the drive system. The two-level inverters, which operate at a higher voltage level of V(dc)/2, switch less compared to the H-bridges, which operate at a lower voltage level of V(dc)/6, resulting in switching loss reduction. The experimental verification of the proposed topology is carried out for the entire modulation range, under steady state as well as transient conditions.
Resumo:
Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control, using only inverter switching state redundancies. The proposed power circuit gives a simple power bus structure.
Resumo:
Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range.
Resumo:
This paper presents the topology selection, design steps, simulation studies, design verification, system fabrication and performance evaluation on an induction motor based dynamometer system. The control algorithm used the application is well known field oriented control or vector control. Position sensorless scheme is adopted to eliminate the encoder requirement. The dynamometer is rated for 3.7kW. It can be used to determine the speed–torque characteristics of any rotating system. The rotating system is to be coupled with the vector controlled drive and the required torque command is given from the latter. The experimental verification is carried out for an open loop v/f drive as a test rotating system and important test results are presented.
Resumo:
Advertisements(Ads) are the main revenue earner for Television (TV) broadcasters. As TV reaches a large audience, it acts as the best media for advertisements of products and services. With the emergence of digital TV, it is important for the broadcasters to provide an intelligent service according to the various dimensions like program features, ad features, viewers’ interest and sponsors’ preference. We present an automatic ad recommendation algorithm that selects a set of ads by considering these dimensions and semantically match them with programs. Features of the ad video are captured interms of annotations and they are grouped into number of predefined semantic categories by using a categorization technique. Fuzzy categorical data clustering technique is applied on categorized data for selecting better suited ads for a particular program. Since the same ad can be recommended for more than one program depending upon multiple parameters, fuzzy clustering acts as the best suited method for ad recommendation. The relative fuzzy score called “degree of membership” calculated for each ad indicates the membership of a particular ad to different program clusters. Subjective evaluation of the algorithm is done by 10 different people and rated with a high success score.
Resumo:
Energy consumption has become a major constraint in providing increased functionality for devices with small form factors. Dynamic voltage and frequency scaling has been identified as an effective approach for reducing the energy consumption of embedded systems. Earlier works on dynamic voltage scaling focused mainly on performing voltage scaling when the CPU is waiting for memory subsystem or concentrated chiefly on loop nests and/or subroutine calls having sufficient number of dynamic instructions. This paper concentrates on coarser program regions and for the first time uses program phase behavior for performing dynamic voltage scaling. Program phases are annotated at compile time with mode switch instructions. Further, we relate the Dynamic Voltage Scaling Problem to the Multiple Choice Knapsack Problem, and use well known heuristics to solve it efficiently. Also, we develop a simple integer linear program formulation for this problem. Experimental evaluation on a set of media applications reveal that our heuristic method obtains a 38% reduction in energy consumption on an average, with a performance degradation of 1% and upto 45% reduction in energy with a performance degradation of 5%. Further, the energy consumed by the heuristic solution is within 1% of the optimal solution obtained from the ILP approach.
Resumo:
This paper proposes a new hybrid nine-level inverter topology for IM drive. The nine-level structure is realized by using two three-phase two-level inverters fed by isolated DC voltage sources and six H-bridges fed by capacitors. The number of switches required in this topology is only 36 where as the conventional nine-level topologies require 48 switches. The voltages across the capacitors, feeding the H-bridges that operate at asymmetric voltages, are effectively balanced by making use of the switching state redundancies. In this topology, the requirement of DC link voltage is only half of the maximum magnitude of the voltage space vector. As the two-level inverters are powered by isolated voltage sources, the circulation of triplen harmonic current in the motor winding is prevented. The proposed drive system is capable of functioning in three-level mode in case of any switch failure in H-bridges. The performance of the proposed topology in the entire modulation range is verified by simulation study and experiment.
Resumo:
A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.
A Novel VSI- and CSI-Fed Active-Reactive Induction Motor Drive with Sinusoidal Voltages and Currents
Resumo:
Till date load-commutated inverter (LCI)-fed synchronous motor drive configuration is popular in high power applications (>10 MW). The leading power factor operation of synchronous motor by excitation control offers this simple and rugged drive structure. On the contrary, LCI-fed induction motor drive is absent as it always draws lagging power factor current. Therefore, complicated commutation circuit is required to switch off thyristors for a current source inverter (CSI)-driven induction motor. It poses the major hindrance to scale up the power rating of CSI-fed induction motor drive. Anew power topology for LCI-fed induction motor drive for medium-voltage drive application is proposed. A new induction machine (active-reactive induction machine) with two sets of three-phase winding is introduced as a drive motor. The proposed power configuration ensures sinusoidal voltage and current at the motor terminals. The total drive power is shared among a thyristor-based LCI, an insulated gate bipolar transistor (IGBT)-based two-level voltage source inverter (VSI), and a three-level VSI. The benefits of SCRs and IGBTs are explored in the proposed drive. Experimental results from a prototype drive verify the basic concepts of the drive.
Resumo:
Intra-aortic balloon pumping is a counter pulsation technique for temporary circulatory assistance in cardiogenic shock and other low cardiac output conditions. Conventional systems use a balloon at the end of a catheter driven by a solenoid valve, controlled by patient's ECG or ventricular pressure signal. This results in time delay introducted by solenoid spool inertia, gas inertia, and hysteresis effects of the solenoid. Fluidics, because of their non-moving part operation and high switching speeds, minimizes the inertial effects while contributing high reliability. This communication describes a fluidic system developed for driving the balloon accepting electric control signals.
Resumo:
This paper describes the method of field orientation of the stator current vector with respect to the stator, mutual, and rotor flux vectors, for the control of an induction motor fed from a current source inverter (CSI). A control scheme using this principle is described for orienting the stator current with respect to the rotor flux, as this gives natural decoupling between the current coordinates. A dedicated micro-computer system developed for implementing this scheme has been described. The experimental results are also presented.
Resumo:
A torque control scheme, based on a direct torque control (DTC) algorithm using a 12-sided polygonal voltage space vector, is proposed for a variable speed control of an open-end induction motor drive. The conventional DTC scheme uses a stator flux vector for the sector identification and then the switching vector to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady-state model of IM and the synchronous frequency of operation is derived from the computed stator flux using a low-pass filter technique. The proposed DTC scheme utilizes the exact positions of the fundamental stator voltage vector and stator flux vector to select the optimal switching vector for fast control of torque with small variation of stator flux within the hysteresis band. The present DTC scheme allows full load torque control with fast transient response to very low speeds of operation, with reduced switching frequency variation. Extensive experimental results are presented to show the fast torque control for speed of operation from zero to rated.
Resumo:
Gate driver is an integral part of every power converter, drives the power semiconductor devices and also provides protection for the switches against short-circuit events and over-voltages during shut down. Gate drive card for IGBTs and MOSFETs with basic features can be designed easily by making use of discrete electronic components. Gate driver ICs provides attractive features in a single package, which improves reliability and reduces effort of design engineers. Either case needs one or more isolated power supplies to drive each power semiconductor devices and provide isolation to the control circuitry from the power circuit. The primary emphasis is then to provide simplified and compact isolated power supplies to the gate drive card with the requisite isolation strength and which consumes less space, and for providing thermal protection to the power semiconductor modules for 3-� 3 wire or 4 wire inverters.