958 resultados para Extended Hubbard-model
Resumo:
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
Vitamin D (VD), is a steroid hormone with multiple functions in the central nervous system (CNS), producing numerous physiological effects mediated by its receptor (VDR). Clinical and experimental studies have shown a link between VD dysfunction and epilepsy. Along these lines, the purpose of our work was to analyze the relative expression of VDR mRNA in the hippocampal formation of rats during the three periods of pilocarpine-induced epilepsy. Male Wistar rats were divided into five groups: (1) control group; rats that received saline 0.9%, i.p. and were killed 7 days after its administration (CTRL, n = 8), (2) SE group; rats that received pilocarpine and were killed 4 h after SE (SE, n = 8), (3) Silent group-7 days; rats that received pilocarpine and were killed 7 days after SE (SIL 7d, n = 8), (4) Silent group-14 days; rats that received pilocarpine and were killed 14 days after SE (SIL 14d, n = 8), (5) Chronic group; rats that received pilocarpine and were killed 60 days after the first spontaneous seizure, (chronic, n = 8). The relative expression of VDR mRNA was determined by real-time PCR. Our results showed an increase of the relative expression of VDR mRNA in the SIL 7 days, SIL 14 days and Chronic groups, respectively (0.060 +/- 0.024; 0.052 +/- 0.035; 0.085 +/- 0.055) when compared with the CTRL and SE groups (0.019 +/- 0.017; 0.019 +/- 0.025). These data suggest the VDR as a possible candidate participating in the epileptogenesis process of the pilocarpine model of epilepsy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The popular Newmark algorithm, used for implicit direct integration of structural dynamics, is extended by means of a nodal partition to permit use of different timesteps in different regions of a structural model. The algorithm developed has as a special case an explicit-explicit subcycling algorithm previously reported by Belytschko, Yen and Mullen. That algorithm has been shown, in the absence of damping or other energy dissipation, to exhibit instability over narrow timestep ranges that become narrower as the number of degrees of freedom increases, making them unlikely to be encountered in practice. The present algorithm avoids such instabilities in the case of a one to two timestep ratio (two subcycles), achieving unconditional stability in an exponential sense for a linear problem. However, with three or more subcycles, the trapezoidal rule exhibits stability that becomes conditional, falling towards that of the central difference method as the number of subcycles increases. Instabilities over narrow timestep ranges, that become narrower as the model size increases, also appear with three or more subcycles. However by moving the partition between timesteps one row of elements into the region suitable for integration with the larger timestep these the unstable timestep ranges become extremely narrow, even in simple systems with a few degrees of freedom. As well, accuracy is improved. Use of a version of the Newmark algorithm that dissipates high frequencies minimises or eliminates these narrow bands of instability. Viscous damping is also shown to remove these instabilities, at the expense of having more effect on the low frequency response.
Resumo:
Aerobic training (AT) decreases dyspnoea and exercise-induced bronchospasm, and improves aerobic capacity and quality of life; however, the mechanisms for such benefits remain poorly understood. The aim of the present study was to evaluate the AT effects in a chronic model of allergic lung inflammation in mice after the establishment of airway inflammation and remodelling. Mice were divided into the control group, AT group, ovalbumin (OVA) group or OVA+AT group and exposed to saline or OVA. AT was started on day 28 for 60 min five times per week for 4 weeks. Respiratory mechanics, specific immunoglobulin (Ig)E and IgG(1), collagen and elastic fibres deposition, smooth muscle thickness, epithelial mucus, and peribronchial density of eosinophils, CD3+ and CD4+, IL-4, IL-5, IL-13, interferon-gamma, IL-2, IL-1ra, IL-10, nuclear factor (NF)-kappa B and Foxp3 were evaluated. The OVA group showed an increase in IgE and IgG1, eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappa B, collagen and elastic, mucus synthesis, smooth muscle thickness and lung tissue resistance and elastance. The OVA+AT group demonstrated an increase of IgE and IgG(1), and reduction of eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappa B, airway remodelling, mucus synthesis, smooth muscle thickness and tissue resistance and elastance compared with the OVA roup (p < 0.05). The OVA+AT group also showed an increase in IL-10 and IL-1ra (p < 0.05), independently of Foxp3. AT reversed airway inflammation and remodelling and T-helper cell 2 response, and improved respiratory mechanics. These results seem to occur due to an increase in the expression of IL-10 and IL-1ra and a decrease of NF-kappa B.
Resumo:
Matrix metalloproteinases (MMPs) are crucial to the development and maintenance of healthy tissue and are mainly involved in extracellular matrix (ECM) remodeling of skeletal muscle. This study evaluated the effects of chronic allergic airway inflammation (CAAI), induced by ovalbumin, and aerobic training in the MMPs activity in mouse diaphragm muscle. Thirty mice were divided into 6 groups: 1) control; 2) ovalbumin; 3) treadmill trained at 50% of maximum speed; 4) ovalbumin and trained at 50%; 5) trained at 75%; 6) ovalbumin and trained at 75%. CAAI did not after MMPs activities in diaphragm muscle. Nevertheless, both treadmill aerobic trainings, associated with CAAI increased the MMP-2 and -1 activities. Furthermore, MMP-9 was not detected in any group. Together, these findings suggest an ECM remodeling in diaphragm muscle of asthmatic mice submitted to physical training. This result may be useful for a better understanding of functional significance of changes in the MMPs activity in response to physical training in asthma.
Resumo:
Recent advances in computer technology have made it possible to create virtual plants by simulating the details of structural development of individual plants. Software has been developed that processes plant models expressed in a special purpose mini-language based on the Lindenmayer system formalism. These models can be extended from their architectural basis to capture plant physiology by integrating them with crop models, which estimate biomass production as a consequence of environmental inputs. Through this process, virtual plants will gain the ability to react to broad environmental conditions, while crop models will gain a visualisation component. This integration requires the resolution of the fundamentally different time scales underlying the approaches. Architectural models are usually based on physiological time; each time step encompasses the same amount of development in the plant, without regard to the passage of real time. In contrast, physiological models are based in real time; the amount of development in a time step is dependent on environmental conditions during the period. This paper provides a background on the plant modelling language, then describes how widely-used concepts of thermal time can be implemented to resolve these time scale differences. The process is illustrated using a case study. (C) 1997 Elsevier Science Ltd.
Resumo:
The suprathermal particles, electrons and protons, coming from the magnetosphere and precipitating into the high-latitude atmosphere are an energy source of the Earth's ionosphere. They interact with ambient thermal gas through inelastic and elastic collisions. The physical quantities perturbed by these precipitations, such as the heating rate, the electron production rate, or the emission intensities, can be provided in solving the kinetic stationary Boltzmann equation. This equation yields particle fluxes as a function of altitude, energy, and pitch angle. While this equation has been solved through different ways for the electron transport and fully tested, the proton transport is more complicated. Because of charge-changing reactions, the latter is a set of two-coupled transport equations that must be solved: one for protons and the other for H atoms. We present here a new approach that solves the multistream proton/hydrogen transport equations encompassing the collision angular redistributions and the magnetic mirroring effect. In order to validate our model we discuss the energy conservation and we compare with another model under the same inputs and with rocket observations. The influence of the angular redistributions is discussed in a forthcoming paper.
Resumo:
We describe a method for multiple indicator dilution studies in the isolated perfused human placental lobule developed to investigate the relationships between changes in pressure and flow and solute clearance. A peripheral lobule of a human placenta is perfused with a tissue culture-based medium and the perfusate oxygen tension, arterial and venous pressures, pH and perfusion temperature continuously monitored by a computerized system. Flow rates are readily changed. Bolus injections of vascular, extracellular and water space markers, and study compounds can be made into either maternal or fetal circulations, and precisely timed outflow fractions can be collected with computer-controlled fraction collectors, allowing simultaneous determination of concentration-time profiles of each marker. (C) 1997 Elsevier Science Inc.
Resumo:
Introduction: Xenotransplantation and multivisceral transplantation are advanced therapeutic methods that still require a scientific basis. There are no experimental models of multivisceral transplantation available, particularly not the monitoring by endoscopy. Here, we describe the endoscopic features in a model of multivisceral xenotransplantation. Methods: The distal esophagus, stomach, intestine, colon, liver, pancreas, and the kidneys with a common vascular pedicle were harvested from rabbits and implanted in swine (group I, n = 9) or in rabbits (group II, n = 4). Endoscopy was performed in the stomach, jejunum, and ascending colon at four consecutive time points (immediate after surgery and 10, 90, and 180 min after reperfusion). Lesions were macroscopically graded as mild, moderate, and severe. Biopsies were taken following sacrifice at 180 min after reperfusion. Results: In group I, the stomach, jejunum, and colon manifested a progression of lesions with predominance of mild lesions after 10 min, mild to moderate lesions after 90 min, and moderate to severe lesions after 180 min. In animals from group II, endoscopy showed normal features at all time points after reperfusion. Histopathologic analysis confirmed the diagnosis of hyperacute rejection in group I. Grafts from group II animals presented normal or mild ischemic/reperfusion injury. Conclusion: All animals subjected to multivisceral xenotransplantation showed a progression of endoscopic lesions with time after transplantation, while animals subjected to allotransplantation showed no aberrations in endoscopy. We conclude that endoscopy is a useful tool in the assessment of hyperacute rejection of a xenograft.
Resumo:
The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower gl-owing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, tau(B), is fixed. The two parameters in the model, the critical size and tau(B), were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
This paper provides a characterization of QALYs, the most important outcome measure in medical decision making, in the context of a general rank dependent utility model. We show that both for chronic and for nonchronic health states the characterization of QALYs depends on intuitive conditions. This facilitates the assessment of the validity of QALYs in rank dependent non-expected utility theories and a comparison with other utility based measures of health.
Resumo:
Nursing diagnoses associated with alterations of urinary elimination require different interventions, Nurses, who are not specialists, require support to diagnose and manage patients with disturbances of urine elimination. The aim of this study was to present a model based on fuzzy logic for differential diagnosis of alterations in urinary elimination, considering nursing diagnosis approved by the North American Nursing Diagnosis Association, 2001-2002. Fuzzy relations and the maximum-minimum composition approach were used to develop the system. The model performance was evaluated with 195 cases from the database of a previous study, resulting in 79.0% of total concordance and 19.5% of partial concordance, when compared with the panel of experts. Total discordance was observed in only three cases (1.5%). The agreement between model and experts was excellent (kappa = 0.98, P < .0001) or substantial (kappa = 0.69, P < .0001) when considering the overestimative accordance (accordance was considered when at least one diagnosis was equal) and the underestimative discordance (discordance was considered when at least one diagnosis was different), respectively. The model herein presented showed good performance and a simple theoretical structure, therefore demanding few computational resources.
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization.