990 resultados para Exposed temperature
Resumo:
When doing researches on solute dynamics in porous medium, the knowledge of medium characteristics and percolating liquids, as well as of external factors is very important. An important external factor is temperature and, in this sense, our purpose was determining potassium and nitrate transport parameters for different values of temperature, in miscible displacement experiments. Evaluated parameters were retardation factor (R), diffusion/dispersion coefficient (D) and dispersivity, at ambient temperature (25 up to 28 ºC), 40 ºC and 50 ºC. Salts used were potassium nitrate and potassium chlorate, prepared in a solution made up of 5 ppm nitrate and 2.000 ppm potassium, with Red-Yellow Latosol porous medium. Temperature exhibited a positive influence upon porous medium solution and upon dispersion coefficient.
Resumo:
The broiler rectal temperature (t rectal) is one of the most important physiological responses to classify the animal thermal comfort. Therefore, the aim of this study was to adjust regression models in order to predict the rectal temperature (t rectal) of broiler chickens under different thermal conditions based on age (A) and a meteorological variable (air temperature - t air) or a thermal comfort index (temperature and humidity index -THI or black globe humidity index - BGHI) or a physical quantity enthalpy (H). In addition, through the inversion of these models and the expected t rectal intervals for each age, the comfort limits of t air, THI, BGHI and H for the chicks in the heating phase were determined, aiding in the validation of the equations and the preliminary limits for H. The experimental data used to adjust the mathematical models were collected in two commercial poultry farms, with Cobb chicks, from 1 to 14 days of age. It was possible to predict the t rectal of conditions from the expected t rectal and determine the lower and superior comfort thresholds of broilers satisfactorily by applying the four models adjusted; as well as to invert the models for prediction of the environmental H for the chicks first 14 days of life.
Resumo:
The objective of this study was to simulate the impact of elevated temperature scenarios on leaf development of potato in Santa Maria, RS, Brazil. Leaf appearance was estimated using a multiplicative model that has a non-linear temperature response function which calculates the daily leaf appearance rate (LAR, leaves day-1) and the accumulated number of leaves (LN) from crop emergence to the appearance of the upper last leaf. Leaf appearance was estimated during 100 years in the following scenarios: current climate, +1 °C, +2 °C, +3 °C, +4 °C e +5 °C. The LAR model was estimated with coefficients of the Asterix cultivar in five emergence dates and in two growing seasons (Fall and Spring). Variable of interest was the duration (days) of the crop emergence to the appearance of the final leaf number (EM-FLN) phase. Statistical analysis was performed assuming a three-factorial experiment, with main effects being climate scenarios, growing seasons, and emergence dates in a completely randomized design using years (one hundred) as replications. The results showed that warmer scenarios lead to an increase, in the fall, and a decrease, in the spring growing season, in the duration of the leaf appearance phase, indicating high vulnerability and complexity of the response of potato crop grown in a Subtropical environment to climate change.
Resumo:
Due to changes in genetics and nutrition, as well as in acclimatization of broiler chickens to the Brazilian climate, temperature values currently accepted as optimal may be outdated. The objective of this research was to update the environment temperatures that characterize the thermal comfort for broilers chickens from one to 21 days of age, under Brazilian production conditions. This research was conducted with 600 COBB birds, which were distributed in five growth chambers maintained at different temperatures during the first three weeks of age. During the experimental period, temperature values were progressively reduced, consisting in five treatments: T2724/21, T30/27/24, T33/30/27, T36/33/30 and T39/36/33. It was observed that the birds maintained in the T30(27-24) treatment presented better performance compared to other environment conditions. Based on the obtained regression models, the environment temperature values that provide greater weighing gain for the broiler chicken growth in the initial period were 31.3, 25.5 and 21.8 ºC, respectively for the first, second and third week of age.
Resumo:
The air dry-bulb temperature (t db),as well as the black globe humidity index (BGHI), exert great influence on the development of broiler chickens during their heating phase. Therefore, the aim of this study was to analyze the structure and the magnitude of the t db and BGHI spatial variability, using geostatistics tools such as semivariogram analysis and also producing kriging maps. The experiment was conducted in the west mesoregion of the states of Minas Gerais in 2010, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the firsts 14 days of the birds' life. The data were registered at intervals of five minutes in the period from 8 a.m. to 10 a.m. The variables were evaluated by variograms fitted by residual maximum likelihood (REML) testing the Spherical and Exponential models. Kriging maps were generated based on the best model used to fit the variogram. It was possible to characterize the variability of the t db and BGHI, which allowed observing the spatial dependence by using geostatistics techniques. In addition, the use of geostatistics and distribution maps made possible to identify problems in the heating system in regions inside the broiler house that may harm the development of chicks.
Resumo:
Urbanization has caused significant environmental impacts, replacing natural surfaces by buildings, decreasing green vegetated areas, soil sealing and atmospheric pollution which contribute to increase the land surface temperature in such areas. Thus, this study aimed to analyze the influence of urbanization on land surface temperature (Ts) in Recife city - Pernambuco (PE), in Brazil, using the Thematic Mapper (TM) sensor images from Landsat 5 satellite. To perform the study, images of August 4, 1998 and September 6, 2010 were obtained and processed to generate Ts thematic maps of Recife-PE and of two districts of this city (Curado and Casa Amarela), in order to analyze the transformation dynamics that has occurred in the area. Through the profile produced for the study area, a spatial and temporal increase of the Ts surface was noticeable in the suburb-downtown direction: 6°C of difference between these areas. The Casa Amarela district, with high urban concentration, presented the highest Ts values observed (>27°C).
Resumo:
Studies on the effects of temperature and time of incubation of wastewater samples for the estimation of biodegradable organic matter through the biochemical oxygen demand (BOD), that nowadays are rare, considering that the results of the classic study of STREETER & PHELPS(1925) have been accepted as standard. However, there are still questions how could be possible to reduce the incubation time; whether the coefficient of temperature (θ) varies with the temperature and with the type of wastewater and if it approaches 1.047. Aiming the elucidation of these questions, wastewater samples of dairy, swine and sewage treated in septic tanks were incubated at temperatures of 20, 30 and 35 °C, respectively for 5, 3.16 and 2.5 days. From the parameter of deoxygenation coefficient at 20 °C (k20), θ30 and θ35 were calculated. The results indicated that θ values changes with the type of wastewater, however does not vary in the temperature range between 30 and 35 °C, and that the use of 1.047 value did not implied significant differences in obtaining k in a determined T temperature. Thus, it is observed that the value of θ can be used to estimate the required incubation time of the samples at different temperatures.
Resumo:
Straw on sowing line modifies seed germination environment regarding temperature and water content. Given these considerations, the aim of this study was to evaluate different mechanisms for coverage mobilization on the sowing line and their effect on germination environment of maize seeds, mainly in relation to the dynamics of straw in the seedbed, water content and soil temperature. Treatments consisted on the combination of two mechanisms at front of furrow opener, composed of cutting disc and row cleaners, with three mechanisms behind the seed furrower for returning the soil, consisting of three covering mechanisms, commercial and prototype models. It was found that straw presence on the surface of sowing line contributed to germination of maize seeds, maintenance of temperature and soil water content. The cutting disc treatment, associated with prototype, introduced percentages of water content near the ones in bottom layer, and this soil water content was 29.7% with 93.75% of straw coverage and deeper seeding depth, granting better conditions for seed germination. However, the straw coverage removal on soil by the row cleaners and its low sowing depth caused water loss in the lines resulting in great reduction of the emergence speed index in maize seedlings.
Resumo:
This study aimed at evaluating the effects of ethylene on peel color and compositional changes in ‘Lane late’ orange stored under refrigerated and ambient conditions. Physiologically mature, but green-peeled, oranges were exposed to ethylene gas under room temperature and high relative humidity for 24 hours. Storage chamber was ventilated with fresh air after 12 hours to mitigate consequences derived from fruit respiration. Both nondestructive analysis, such as peel color (hue angle, chromaticity, and brightness) and weight loss, and destructive ones (soluble solids, titratable acidity, pH, soluble solids to acidity ratio, and puncture force) were performed upon harvest, after degreening, and every three days during eighteen days in storage. Experiment was carried out using an entirely randomized design with thirty replications for nondestructive and four replications for destructive analyses, in a split plot scheme. Exposure to ethylene ensured a golden yellow peel for both fruit stored under ambient and refrigerated conditions. High relative humidity, associated with low temperature prevented fruit from losing moisture. Fruit exposure to ethylene did not affect weight loss, soluble solids, titratable acidity, pH, soluble solids, acidity ratio, or puncture force.
Resumo:
ABSTRACT In animal farming, an automatic and precise control of environmental conditions needs information from variables derived from the animals themselves, i.e. they act as biosensors. Rectal temperature (RT) and respiratory rate (RR) are good indicators of thermoregulation in pigs. Since there is a growing concern on animal welfare, the search for alternatives to measure RT has become even more necessary. This research aimed to identify the most adequate body surface areas, on nursery-phase pigs, to take temperature measurements that best represent the correlation of RT and RR. The main experiment was carried out in a climate chamber with five 30-day-old littermate female Landrace x Large White piglets. Temperature conditions inside chamber were varied from 14 °C up to 35.5 °C. The measurements were taken each 30 minutes, over six different skin regions, using a temperature data logger Thermochron iButton® - DS1921G (Tb) and an infrared thermometer (Ti). As shown by the results, the tympanic region is the best one for RT and RR monitoring using an infrared thermometer (TiF). In contrast, when using temperature sensors, the ear (TbE) is preferred to be used for RT predictions and the loin region (TbC) for RR.
Resumo:
Increased emissions of greenhouse gases into the atmosphere are causing an anthropogenic climate change. The resulting global warming challenges the ability of organisms to adapt to the new temperature conditions. However, warming is not the only major threat. In marine environments, dissolution of carbon dioxide from the atmosphere causes a decrease in surface water pH, the so called ocean acidification. The temperature and acidification effects can interact, and create even larger problems for the marine flora and fauna than either of the effects would cause alone. I have used Baltic calanoid copepods (crustacean zooplankton) as my research object and studied their growth and stress responses using climate predictions projected for the next century. I have studied both direct temperature and pH effects on copepods, and indirect effects via their food: the changing phytoplankton spring bloom composition and toxic cyanobacterium. The main aims of my thesis were: 1) to find out how warming and acidification combined with a toxic cyanobacterium affect copepod reproductive success (egg production, egg viability, egg hatching success, offspring development) and oxidative balance (antioxidant capacity, oxidative damage), and 2) to reveal the possible food quality effects of spring phytoplankton bloom composition dominated by diatoms or dinoflagellates on reproducing copepods (egg production, egg hatching, RNA:DNA ratio). The two copepod genera used, Acartia sp. and Eurytemora affinis are the dominating mesozooplankton taxa (0.2 – 2 mm) in my study area the Gulf of Finland. The 20°C temperature seems to be within the tolerance limits of Acartia spp., because copepods can adapt to the temperature phenotypically by adjusting their body size. Copepods are also able to tolerate a pH decrease of 0.4 from present values, but the combination of warm water and decreased pH causes problems for them. In my studies, the copepod oxidative balance was negatively influenced by the interaction of these two environmental factors, and egg and nauplii production were lower at 20°C and lower pH, than at 20°C and ambient pH. However, presence of toxic cyanobacterium Nodularia spumigena improved the copepod oxidative balance and helped to resist the environmental stress, in question. In addition, adaptive maternal effects seem to be an important adaptation mechanism in a changing environment, but it depends on the condition of the female copepod and her diet how much she can invest in her offspring. I did not find systematic food quality difference between diatoms and dinoflagellates. There are both good and bad diatom and dinoflagellate species. Instead, the dominating species in the phytoplankton bloom composition has a central role in determining the food quality, although copepods aim at obtaining as a balanced diet as possible by foraging on several species. If the dominating species is of poor quality it can cause stress when ingested, or lead to non-optimal foraging if rejected. My thesis demonstrates that climate change induced water temperature and pH changes can cause problems to Baltic Sea copepod communities. However, their resilience depends substantially on their diet, and therefore the response of phytoplankton to the environmental changes. As copepods are an important link in pelagic food webs, their future success can have far reaching consequences, for example on fish stocks.
Resumo:
In this doctoral thesis, methods to estimate the expected power cycling life of power semiconductor modules based on chip temperature modeling are developed. Frequency converters operate under dynamic loads in most electric drives. The varying loads cause thermal expansion and contraction, which stresses the internal boundaries between the material layers in the power module. Eventually, the stress wears out the semiconductor modules. The wear-out cannot be detected by traditional temperature or current measurements inside the frequency converter. Therefore, it is important to develop a method to predict the end of the converter lifetime. The thesis concentrates on power-cycling-related failures of insulated gate bipolar transistors. Two types of power modules are discussed: a direct bonded copper (DBC) sandwich structure with and without a baseplate. Most common failure mechanisms are reviewed, and methods to improve the power cycling lifetime of the power modules are presented. Power cycling curves are determined for a module with a lead-free solder by accelerated power cycling tests. A lifetime model is selected and the parameters are updated based on the power cycling test results. According to the measurements, the factor of improvement in the power cycling lifetime of modern IGBT power modules is greater than 10 during the last decade. Also, it is noticed that a 10 C increase in the chip temperature cycle amplitude decreases the lifetime by 40%. A thermal model for the chip temperature estimation is developed. The model is based on power loss estimation of the chip from the output current of the frequency converter. The model is verified with a purpose-built test equipment, which allows simultaneous measurement and simulation of the chip temperature with an arbitrary load waveform. The measurement system is shown to be convenient for studying the thermal behavior of the chip. It is found that the thermal model has a 5 C accuracy in the temperature estimation. The temperature cycles that the power semiconductor chip has experienced are counted by the rainflow algorithm. The counted cycles are compared with the experimentally verified power cycling curves to estimate the life consumption based on the mission profile of the drive. The methods are validated by the lifetime estimation of a power module in a direct-driven wind turbine. The estimated lifetime of the IGBT power module in a direct-driven wind turbine is 15 000 years, if the turbine is located in south-eastern Finland.
Resumo:
Nile tilapia, Oreochromis niloticus, of both sexes were reared in freshwater and exposed to 0.5, 1.0 and 2.5mg L-1 of waterborne copper for a period of 21 days. Liver and gill samples were collected after 21 days of exposure to copper and lesions were analyzed by light microscopy. The main histopathological changes observed in gills exposed to the highest concentration were edema, lifting of lamellar epithelia and an intense vasodilatation of the lamellar vascular axis. Although less frequent, lamellar fusion caused by the filamentar epithelium proliferation and some lamellar aneurisms were also found. The liver of control group exhibited a quite normal architecture, while the fish exposed to copper showed vacuolation and necrosis. These hepatic alterations were more evident in fish exposed to 1.0 and 2.5mg L-1 copper concentrations. The number of hepatocytes nucleus per mm² of hepatic tissue decreased with the increase of copper concentration. In contrast, the hepatic somatic index was high in fish exposed at 2.5mg L-1 of copper. In short, this work advance new knowledge as influence of copper in the gill and liver histology of O. niloticus and demonstrated that their effects could be observed at different concentrations.
Resumo:
The aim of this study was to evaluate alterations to the physiological profile (cortisol, glycaemia, and blood parameters) of Lithobates catesbeianus caused by the stressors density and hypoxia. The organisms were in the prometamorphosis stage and exposed to different tadpole densities: 1 tadpole/L (T1), 5 tadpoles/L (T2), and 10 tadpoles/L (T3) for 12 days. The blood was collected through the rupture of the caudal blood vessel and collected under normoxia (immediate collection) and hypoxia (after 15 minutes of air exposure) conditions. Cortisol levels rose on the fourth and eighth days of treatment and returned to basal levels by the end of the experiment. The stressor mechanisms tested did not affect glycaemia. White blood cells (total number of lymphocytes, neutrophils, and eosinophils) showed a significant difference at the twelfth day of the experiment when compared with the start of the experiment. We concluded that, under controlled conditions, a density of up to 10 tadpoles/L and air exposure for 15 minutes did not cause harmful physiological alterations during the experimental period. The answer to these stressors maybe was in another hormonal level (corticosterone).