977 resultados para Evolutionary algorithm (EA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an improved Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. The evaluation of the algorithm considers the three important metrics being processing time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a parallel Linear Hashtable Motion Estimation Algorithm (LHMEA). Most parallel video compression algorithms focus on Group of Picture (GOP). Based on LHMEA we proposed earlier [1][2], we developed a parallel motion estimation algorithm focus inside of frame. We divide each reference frames into equally sized regions. These regions are going to be processed in parallel to increase the encoding speed significantly. The theory and practice speed up of parallel LHMEA according to the number of PCs in the cluster are compared and discussed. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass Hexagonal Search (HEXBS) motion estimation, which only searches a small number of Macroblocks (MBs). We evaluated distributed parallel implementation of LHMEA of TPA for real time video compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an improved parallel Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We used bashtable into video processing and completed parallel implementation. The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. The implementation contains spatial and temporal approaches. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convex combination is a mathematic approach to keep the advantages of its component algorithms for better performance. In this paper, we employ convex combination in the blind equalization to achieve better blind equalization. By combining the blind constant modulus algorithm (CMA) and decision directed algorithm, the combinative blind equalization (CBE) algorithm can retain the advantages from both. Furthermore, the convergence speed of the CBE algorithm is faster than both of its component equalizers. Simulation results are also given to verify the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential Evolution (DE) is a tool for efficient optimisation, and it belongs to the class of evolutionary algorithms, which include Evolution Strategies and Genetic Algorithms. DE algorithms work well when the population covers the entire search space, and they have shown to be effective on a large range of classical optimisation problems. However, an undesirable behaviour was detected when all the members of the population are in a basin of attraction of a local optimum (local minimum or local maximum), because in this situation the population cannot escape from it. This paper proposes a modification of the standard mechanisms in DE algorithm in order to change the exploration vs. exploitation balance to improve its behaviour.