915 resultados para Eustathius, Archbishop of Thessalonica, d. ca. 1194.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faulted stacking layers are ubiquitously observed during the crystal growth of semiconducting nanowires (NWs). In this paper, we employ the reverse non-equilibrium molecular dynamics simulation to elucidate the effect of various faulted stacking layers on the thermal conductivity (TC) of silicon (Si) NWs. We find that the stacking faults can greatly reduce the TC of the Si NW. Among the different stacking faults that are parallel to the NW's axis, the 9R polytype structure, the intrinsic and extrinsic stacking faults (iSFs and eSFs) exert more pronounced effects in the reduction of TC than the twin boundary (TB). However, for the perpendicularly aligned faulted stacking layers, the eSFs and 9R polytype structures are observed to induce a larger reduction to the TC of the NW than the TB and iSFs. For all considered NWs, the TC does not show a strong relation with the increasing number of faulted stacking layers. Our studies suggest the possibility of tuning the thermal properties of Si NWs by altering the crystal structure via the different faulted stacking layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advocacy is integral to the work of many TESOL specialists. For several decades, ACTA and the state TESOL associations, along with other professional associations, and individual teachers, researchers and administrators have all engaged with conversations about EAL/D education in public forums. These advocates have drawn attention to implications of policy developments for EAL/D students; they have proffered alternative forms of curriculum, pedagogy and assessment to better account for the particularity of EAL/D learning pathways; they have argued the necessity of specialist EAL/D teaching. In response to the Australian Language and Literacy Policy of the early 1990s, for example, there was “a frenzy of writing responses… a conference… and attempts to publicise what was going on through the press and television” (Moore, 1995, p. 6). It is in this spirit that this double issue of TESOL in Context has been compiled...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A SINGLE document was all it took to illuminate a dark secret in the Church of England. The two-page child protection report, unearthed by police in the archives of the diocese of Manchester, was proof, at last, that a former cathedral choirboy -- alleging years of sexual abuse by one of Britain's most senior clergyman -- was not alone. There was another boy. Also a solo soprano, on the other side of the world, who was singing from the same hymn sheet about The Very Reverend Robert Waddington. "There had been a previous referral about sexual impropriety some time ago from Australia, where RW had been the headmaster at a school. An ex-pupil had made a complaint to the Bishop of (north) Queensland who had relayed it to the Archbishop (of York)," the 2003 report says. Eli Ward's family had prompted the secret report when they told church officials, without Ward's knowledge, of the alleged abuse he suffered in the mid-1980s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Hybrid hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal–hydrogen systems correspond to low enthalpies of hydrogen absorption–desorption. This decreases the calorimetric effects of the hydride formation–decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading—removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to −20 kJ/mol H2 were studied to investigate the hydrogenation mechanism and kinetics: CeNi5–D2 and ZrFe2−xAlx (x = 0.02; 0.04; 0.20)–D2. The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi5 intermetallic resulted in CeNi5D6.3 with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce2Ni2 and Ni4 tetrahedra, and Ce2Ni3 half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al-modified Laves-type C15 ZrFe2−xAlx intermetallics, deuteration showed very fast kinetics of H/D exchange and resulted in a volume increase of the FCC unit cells of 23.5% for ZrFe1.98Al0.02D2.9(1). Deuterium content, hysteresis of H/D uptake and release, unit cell expansion and stability of the hydrides systematically change with the amount of Al content. In the deuteride D atoms exclusively occupy the Zr2(Fe,Al)2 tetrahedra. Observed interatomic distances are Zr–D = 1.98–2.11; (Fe, Al)–D = 1.70–1.75A˚ . Hydrogenation slightly increases the magnetic moment of the Fe atoms in ZrFe1.98Al0.02 and ZrFe1.96Al0.04 from 1.9 �B at room temperature for the alloy to 2.2 �B for its deuteride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity $D$, and the cell proliferation rate �$\lambda$. Scratch assays are a commonly-reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched and the motion of the front is monitored over a short period of time, often less than 24 hours. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Leading edge data is very convenient since, unlike other methods, it is nondestructive and does not require labeling, tracking or counting individual cells amongst the population. In this work we study short time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allows us to reliably identify $D$ and $\lambda$�. Using a naıve calibration approach where we simply scan the relevant region of the ($D$;$\lambda$�) parameter space, we show that there are many choices of $D$ and $\lambda$� for which our model produces indistinguishable short time leading edge data. Therefore, without due care, it is impossible to estimate $D$ and $\lambda$� from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information we divide the duration of the experiment into two periods, and we estimate $D$ using data from the first period, while we estimate �$\lambda$ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of $D$ and $\lamdba$� that are consistent with previously-reported values except that that our approach is fast, inexpensive, nondestructive and avoids the need for cell labeling and cell counting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subiculum is the major output region of the hippocampal formation. We have studied pyramidal neurons in slices of rat ventral subiculum to determine if there is a correlation between nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity and electrophysiological phenotype. The majority of NADPH-d-positive pyramidal neurons were found in the superficial cell layer (i.e. nearest to the hippocampal fissure) of the subiculum and appreciable NADPH-d activity was absent from pyramidal neurons in area CA1. This distribution of NADPH-d activity was mimicked by that of immunoreactivity for the neuronal isoform of nitric oxide synthase. Subicular pyramidal neurons were classified, electrophysiologically, as intrinsically burst-firing or regular spiking. After electrophysiological characterization, neurons were filled with Neurobiotin and revealed using fluorescence immunocytochemistry. The slices containing these neurons were also processed for NADPH-d. NADPH-d activity was found in six out of eight regular spiking neurons but was not found in any of 13 intrinsically burst-firing neurons (P=0.0008, Fisher's Exact Test). We conclude that in rat ventral subiculum, NADPH-d activity is present in a proportion of pyramidal neurons and indicates the presence of the neuronal isoform of nitric oxide synthase. Furthermore, amongst pyramidal neurons, NADPH-d activity is distributed preferentially to those with the regular spiking phenotype. The distribution of regular spiking neurons suggests that they may not be present to the same extent in all subicular output pathways. Thus, the actions of nitric oxide may be relatively specific to particular hippocampal connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project improved the detection and classification of very weakly expressed RhD variants in the Australian blood donor panel and contributed to the knowledge of anti-D reactivity patterns of RHD alleles that are undescribed. As such, the management of donations possessing these RHD alleles can be improved upon and the overall safety of transfusion medicine pertaining to the Rh blood group system will be increased. Future projects at ARCBS will be able to utilise the procedures developed in this project, thereby decreasing throughput time. The specificity of current testing will be improved and the need for outsourced RHD testing diminished.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ~100 ns duration, current peak amplitude of ~6 mA and repetition rate of ~20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some important issues related to the self-organization in the arrays of nanoparticles on solid surfaces exposed to the low-temperature plasma are analysed and discussed. The available tools for the characterization of the size and position uniformity in nanoarrays are examined. The technique capable of revealing the realistic adsorbed atom and adsorbed radical capture zone pattern based on the surface physics is indicated as the most promising characterization tool. The processes responsible for the self-organization are analysed, the main driving forces of the self-organization are discussed, and possible ways to control the self-organization by controlling the plasma parameters are introduced. A view on the possible ways to further improve the methods of nanoarray characterization and self-organization is presented as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles and low-temperature plasmas have been developed, independently and often along different routes, to tackle the same set of challenges in biomedicine. There are intriguing similarities and contrasts in their interactions with cells and living tissues, and these are reflected directly in the characteristics and scope of their intended therapeutic solutions, in particular their chemical reactivity, selectivity against pathogens and cancer cells, safety to healthy cells and tissues and targeted delivery to diseased tissues. Time has come to ask the inevitable question of possible plasma–nanoparticle synergy and the related benefits to the development of effective, selective and safe therapies for modern medicine. This perspective paper offers a detailed review of the strengths and weakenesses of nanomedicine and plasma medicine as a stand-alone technology, and then provides a critical analysis of some of the major opportunities enabled by synergizing nanotechnology and plasma technology. It is shown that the plasma–nanoparticle synergy is best captured through plasma nanotechnology and its benefits for medicine are highly promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescent ZnO nanoparticles have been synthesized on silicon and quartz substrates under extremely non-equilibrium conditions of energetic ion condensation during the post-focus phase in a dense plasma focus (DPF) device. Ar+, O+, Zn+ and ZnO+ ions are generated as a result of interaction of hot and dense argon plasma focus with the surfaces of ZnO pellets placed at the anode. It is found that the sizes, structural and photoluminescence (PL) properties of the ZnO nanoparticles appear to be quite different on Si(1 0 0) and quartz substrates. The results of x-ray diffractometry and atomic force microscopy show that the ZnO nanoparticles are crystalline and range in size from 5-7 nm on Si(1 0 0) substrates to 10-38 nm on quartz substrates. Room-temperature PL studies reveal strong peaks related to excitonic bands and defects for the ZnO nanoparticles deposited on Si (1 0 0), whereas the excitonic bands are not excited in the quartz substrate case. Raman studies indicate the presence of E2 (high) mode for ZnO nanoparticles deposited on Si(1 0 0).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model describing the plasma-assisted growth of carbon nanofibres (CNFs) that accounts for the nanostructure heating by ion and etching gas fluxes from the plasma is developed. Using the model, it is shown that fluxes from the plasma environment can substantially increase the temperature of the catalyst nanoparticle located on the top of the CNF with respect to the substrate temperature. The difference between the catalyst and the substrate temperatures depends on the substrate width, the length of the CNF, the neutral gas density and temperature as well as the densities of the ions and atoms of the etching gas. In addition to the heating of the nanostructure, the ions and etching gas atoms from the ionized gas environment also strongly affect the CNF growth rates. Due to ion bombardment, the CNF growth rates in plasma enhanced chemical vapour deposition may be much higher than the rates in similar neutral gas-based thermal processes. The CNF growth model, which accounts for the nanostructure heating by the plasma-generated species, provides the growth rates that are in better agreement with the available experimental data on CNF growth than the models in which the heating effects are ignored.