976 resultados para Euler obstruction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let H ∈ C 2(ℝ N×n ), H ≥ 0. The PDE system arises as the Euler-Lagrange PDE of vectorial variational problems for the functional E ∞(u, Ω) = ‖H(Du)‖ L ∞(Ω) defined on maps u: Ω ⊆ ℝ n → ℝ N . (1) first appeared in the author's recent work. The scalar case though has a long history initiated by Aronsson. Herein we study the solutions of (1) with emphasis on the case of n = 2 ≤ N with H the Euclidean norm on ℝ N×n , which we call the “∞-Laplacian”. By establishing a rigidity theorem for rank-one maps of independent interest, we analyse a phenomenon of separation of the solutions to phases with qualitatively different behaviour. As a corollary, we extend to N ≥ 2 the Aronsson-Evans-Yu theorem regarding non existence of zeros of |Du| and prove a maximum principle. We further characterise all H for which (1) is elliptic and also study the initial value problem for the ODE system arising for n = 1 but with H(·, u, u′) depending on all the arguments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a Hamiltonian K ∈ C2(RN × n) and a map u:Ω ⊆ Rn − → RN, we consider the supremal functional (1) The “Euler−Lagrange” PDE associated to (1)is the quasilinear system (2) Here KP is the derivative and [ KP ] ⊥ is the projection on its nullspace. (1)and (2)are the fundamental objects of vector-valued Calculus of Variations in L∞ and first arose in recent work of the author [N. Katzourakis, J. Differ. Eqs. 253 (2012) 2123–2139; Commun. Partial Differ. Eqs. 39 (2014) 2091–2124]. Herein we apply our results to Geometric Analysis by choosing as K the dilation function which measures the deviation of u from being conformal. Our main result is that appropriately defined minimisers of (1)solve (2). Hence, PDE methods can be used to study optimised quasiconformal maps. Nonconvexity of K and appearance of interfaces where [ KP ] ⊥ is discontinuous cause extra difficulties. When n = N, this approach has previously been followed by Capogna−Raich ? and relates to Teichmüller’s theory. In particular, we disprove a conjecture appearing therein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let L be a number field and let E/L be an elliptic curve with complex multiplication by the ring of integers O_K of an imaginary quadratic field K. We use class field theory and results of Skorobogatov and Zarhin to compute the transcendental part of the Brauer group of the abelian surface ExE. The results for the odd order torsion also apply to the Brauer group of the K3 surface Kum(ExE). We describe explicitly the elliptic curves E/Q with complex multiplication by O_K such that the Brauer group of ExE contains a transcendental element of odd order. We show that such an element gives rise to a Brauer-Manin obstruction to weak approximation on Kum(ExE), while there is no obstruction coming from the algebraic part of the Brauer group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we describe the morphology and histopathology of Myxobolus salminus n. sp., a parasite of the gill filaments of wild Salminus brasiliensis (dourado) from the Brazilian Pantanal. The small polysporic plasmodia were similar to 100 mu m in diameter and the development was asynchronous. The mature spores were oval to pear shaped and had a smooth wall. The spore measurements were (mean +/- S.D., with range in parentheses): length 10.1 +/- 0.4 mu m (9.6-10.5), width 6.1 +/- 0.4 mu m (5.8-6.6) and thickness 5.0 +/- 0.6 mu m (4.7-5.3). The polar capsules were elongated and of equal size: length 4.6 +/- 0.2 mu m (4.3-4.8) and width 1.7 +/- 0.1 mu m (1.5-1.9). The histological analysis revealed numerous plasmodia in the blood vessels of the gill filaments. The site of parasite development was the wall of the large-caliber blood vessel of the gill filament, with progressive growth towards the lumen, resulting in the obstruction of blood flow, congestion and perivascular edema. The ultrastructural study revealed that the plasmodial wall was composed of two membranes, had numerous pinocytic canals and was in direct contact with the basement membrane of the vessel. The development of the parasite was asynchronous, with mature spores, immature spores and young developmental stages randomly distributed throughout the plasmodium. The prevalence of the parasite was 4.4%. with male and female fish being infected. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a spectrum synthesis method for modeling the ultraviolet (UV) emission from the accretion disk from cataclysmic variables (CVs). The disk is separated into concentric rings, with an internal structure from the Wade & Hubeny disk-atmosphere models. For each ring, a wind atmosphere is calculated in the comoving frame with a vertical velocity structure obtained from a solution of the Euler equation. Using simple assumptions, regarding rotation and the wind streamlines, these one-dimensional models are combined into a single 2.5-dimensional model for which we compute synthetic spectra. We find that the resulting line and continuum behavior as a function of the orbital inclination is consistent with the observations, and verify that the accretion rate affects the wind temperature, leading to corresponding trends in the intensity of UV lines. In general, we also find that the primary mass has a strong effect on the P Cygni absorption profiles, the synthetic emission line profiles are strongly sensitive to the wind temperature structure, and an increase in the mass-loss rate enhances the resonance line intensities. Synthetic spectra were compared with UV data for two high orbital inclination nova-like CVs-RW Tri and V347 Pup. We needed to include disk regions with arbitrary enhanced mass loss to reproduce reasonably well widths and line profiles. This fact and a lack of flux in some high ionization lines may be the signature of the presence of density-enhanced regions in the wind, or alternatively, may result from inadequacies in some of our simplifying assumptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and beta-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received No-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7-30 days. Functional responses to muscarinic and b-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs-Henseleit solution. Measurements of [H-3] inositol phosphate, NO synthase (NOS) activity, [H-3] quinuclidinyl benzilate ([H-3]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the beta(3)-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [H-3] inositol phosphate in bladder tissue from rats treated with L-NAME. [H-3] QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [H-3] inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of beta(3)-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the propagation of perturbations in the energy density in a quark gluon plasma. Expanding the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations we obtain a nonlinear differential equation called the breaking wave equation. We solve it numerically and follow the time-evolution of initially localized pulses. We find that, quite unexpectedly, these pulses live for a very long time (compared to the reaction time-scales) before breaking. In practice, they mimick the Korteweg-de Vries solitons. Their existence may have some observable consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ""radiation"". Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. (C) 2009 Elseiver. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Themean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions ( similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density at high temperature. The equation of state is derived from the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations lead to the breaking wave equation for the density perturbation. We solve it numerically for this perturbation and follow the propagation of the initial pulses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.