945 resultados para Essential Hypertensives
Resumo:
Pancreatic islets from young normal and scorbutic male guinea pigs were examined for their ability to release insulin when stimulated with elevated D-glucose. Islets from normal guinea pigs released insulin in a D-glucose-dependent manner showing a rapid initial secretion phase and three secondary secretion waves during a 120-min period. Islets from scorbutic guinea pigs failed to release insulin during the immediate period, and only delayed and decreased responses were observed over the 40-60 min after D-glucose elevation. Insulin release from scorbutic islets was greatly elevated if 5 mM L-ascorbic acid 2-phosphate was supplemented in the perifusion medium during the last 60 min of perifusion. When 5 mM L-ascorbic acid 2-phosphate was added to the perifusion medium concurrently with elevation of medium D-glucose, islets from scorbutic guinea pigs released insulin as rapidly as control guinea pig islets and to a somewhat greater extent. L-Ascorbic acid 2-phosphate without elevated D-glucose had no effect on insulin release by islets from normal or scorbutic guinea pigs. The pancreas from scorbutic guinea pigs contained 2.4 times more insulin than that from control guinea pigs, suggesting that the decreased insulin release from the scorbutic islets was not due to decreased insulin synthesis but due to abnormal insulin secretion.
Resumo:
Many of the molecules necessary for neurotransmission are homologous to proteins involved in the Golgi-to-plasma membrane stage of the yeast secretory pathway. Of 15 genes known to be essential for the later stages of vesicle trafficking in yeast, 7 have no identified mammalian homologs. These include the yeast SEC6, SEC8, and SEC15 genes, whose products are constituents of a 19.5S particle that interacts with the GTP-binding protein Sec4p. Here we report the sequences of rSec6 and rSec8, rat homologs of Sec6p and Sec8p. The rSec6 cDNA is predicted to encode an 87-kDa protein with 22% amino acid identity to Sec6p, and the rSec8 cDNA is predicted to encode a 110-kDa protein which is 20% identical to Sec8p. Northern blot analysis indicates that rSec6 and rSec8 are expressed in similar tissues. Immunodetection reveals that rSec8 is part of a soluble 17S particle in brain. COS cell cotransfection studies demonstrate that rSec8 colocalizes with the GTP-binding protein Rab3a and syntaxin 1a, two proteins involved in synaptic vesicle docking and fusion at the presynaptic terminal. These data suggest that rSec8 is a component of a high molecular weight complex which may participate in the regulation of vesicle docking and fusion in brain.
Resumo:
We have developed a system to transcribe the yeast 5S rRNA gene in the absence of the transcription factor TFIIIA. A long transcript was synthesized both in vitro and in vivo from a hybrid gene in which the tRNA-like promoter sequence of the RPR1 gene was fused to the yeast 5S RNA gene. No internal initiation directed by the endogenous 5S rDNA promoter or any processing of the hybrid transcript was observed in vitro. Yeast cells devoid of transcription factor TFIIIA, which, therefore, could not synthesize any 5S rRNA from the endogenous chromosomal copies of 5S rDNA, could survive if they carried the hybrid RPR1-5S construct on a multicopy plasmid. In this case, the only source of 5S rRNA was the precursor RPR1-5S transcript that gave rise to two RNA species slightly larger than wild-type 5S rRNA. This establishes that the only essential function of TFIIIA is to promote the synthesis of 5S rRNA. However, cells devoid of TFIIIA and surviving with these two RNAs grew more slowly at 30 degrees C compared with wild-type cells and were thermosensitive at 37 degrees C.
Resumo:
The specific Ca2+ binding site that triggers contraction of molluscan muscle requires the presence of an essential light chain (ELC) from a Ca2+ binding myosin. Of the four EF hand-like domains in molluscan ELCs, only domain III has an amino acid sequence predicted to be capable of binding Ca2+. In this report, we have used mutant ELCs to locate the Ca2+ binding site in scallop myosin and to probe the role of the ELC in regulation. Point mutations in domain III of scallop ELC have no effect on Ca2+ binding. Interestingly, scallop and rat cardiac ELC chimeras support Ca2+ binding only if domain I is scallop. These results are nevertheless in agreement with structural studies on a proteolytic fragment of scallop myosin, the regulatory domain. Furthermore, Ca2+ sensitivity of the scallop myosin ATPase requires scallop ELC domain I: ELCs containing cardiac domain I convert scallop myosin to an unregulated molecule whose activity is no longer repressed in the absence of Ca2+. Despite its unusual EF hand domain sequence, our data indicate that the unique and required contribution of molluscan ELCs to Ca2+ binding and regulation of molluscan myosins resides exclusively in domain I.
Resumo:
Enteropathogenic Escherichia coli (EPEC), a major cause of pediatric diarrhea, adheres to epithelial cells and activates host cell signal transduction pathways. We have identified five proteins that are secreted by EPEC and show that this secretion process is critical for triggering signal transduction events in epithelial cells. Protein secretion occurs via two pathways: one secretes a 110-kDa protein and the other mediates export of the four remaining proteins. Secretion of all five proteins was regulated by temperature and the perA locus, two factors which regulate expression of other known EPEC virulence factors. Amino-terminal sequence analysis of the secreted polypeptides identified one protein (37 kDa) as the product of the eaeB gene, a genetic locus previously shown to be necessary for signal transduction. A second protein (39 kDa) showed significant homology with glyceraldehyde-3-phosphate dehydrogenase, while the other three proteins (110, 40, and 25 kDa) were unique. The secreted proteins associated with epithelial cells, and EaeB became resistant to protease digestion upon association, suggesting that intimate interactions are required for transducing signals.
Resumo:
The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.
Resumo:
Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE.
Resumo:
Antigen-specific activation of T lymphocytes, via stimulation of the T-cell antigen receptor (TCR) complex, is marked by a rapid and sustained increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). It has been suggested that the second messenger inositol 1,4,5-trisphosphate (IP3) produced after TCR stimulation binds to the IP3 receptor (IP3R), an intracellular Ca(2+)-release channel, and triggers the increase in [Ca2+]i that activates transcription of the gene for T-cell growth factor interleukin 2 (IL-2). However, the role of the IP3R in T-cell signaling and possibly in plasma membrane Ca2+ influx in T cells remains unproven. Stable transfection of T cells (Jurkat) with antisense type 1 IP3R cDNA prevented type 1 IP3R expression, providing a tool for dissecting the role of IP3 signaling during T-cell activation. T cells lacking type 1 IP3R failed to increase [Ca2+]i or produce IL-2 after TCR stimulation. Moreover, depletion of intracellular Ca2+ stores without TCR activation stimulated Ca2+ influx in cells lacking the type 1 IP3R. These results establish that the type 1 IP3R is required for intracellular Ca2+ release that triggers antigen-specific T-cell proliferation but not for plasma membrane Ca2+ influx.
Resumo:
S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin.
Resumo:
Gene targeting allows precise, predetermined changes to be made in a chosen gene in the mouse genome. To date, targeting has been used most often for generation of animals completely lacking the product of a gene of interest. The resulting "knockout" mice have confirmed some hypotheses, have upset others, but have rarely been uninformative. Models of several human genetic diseases have been produced by targeting--including Gaucher disease, cystic fibrosis, and the fragile X syndrome. These diseases are primarily determined by defects in single genes, and their modes of inheritance are well understood. When the disease under study has a complex etiology with multiple genetic and environmental components, the generation of animal models becomes more difficult but no less valuable. The problems associated with dissecting out the individual genetic factors also increases substantially and the distinction between causation and correlation is often difficult. To prove causation in a complex system requires rigorous adherence to the principle that the experiments must allow detection of the effects of changing only a single variable at one time. Gene targeting experiments, when properly designed, can test the effects of a precise genetic change completely free from the effects of differences in any other genes (linked or unlinked to the test gene). They therefore allow proofs of causation.
Resumo:
The high-affinity interleukin 2 (IL-2) receptor (IL-2R) consists of three subunits: the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two members of the Janus kinase family, Jak1 and Jak3, are associated with IL-2R beta c and IL-2R gamma c, respectively, and they are activated upon IL-2 stimulation. The cytokine-mediated Jak kinase activation usually results in the activation of a family of latent transcription factors termed Stat (signal transducer and activator of transcription) proteins. Recently, the IL-2-induced Stat protein was purified from human lymphocytes and found to be the homologue of sheep Stat5/mammary gland factor. We demonstrate that the human Stat5 is activated by IL-2 and that Jak3 is required for the efficient activation. The cytoplasmic region of the IL-2R beta c chain required for activation of Stat5 is mapped within the carboxyl-terminal 147 amino acids. On the other hand, this region is not essential for IL-2-induced cell proliferation.
Resumo:
When secY is overexpressed over secE or secE is underexpressed, a fraction of SecY protein is rapidly degraded in vivo. This proteolysis was unaffected in previously described protease-defective mutants examined. We found, however, that some mutations in ftsH, encoding a membrane protein that belongs to the AAA (ATPase associated with a variety of cellular activities) family, stabilized oversynthesized SecY. This stabilization was due to a loss of FtsH function, and overproduction of the wild-type FtsH protein accelerated the degradation. The ftsH mutations also suppressed, by alleviating proteolysis of an altered form of SecY, the temperature sensitivity of the secY24 mutation, which alters SecY such that its interaction with SecE is weakened and it is destabilized at 42 degrees C. We were able to isolate a number of additional mutants with decreased ftsH expression or with an altered form of FtsH using selection/screening based on suppression of secY24 and stabilization of oversynthesized SecY. These results indicate that FtsH is required for degradation of SecY. Overproduction of SecY in the ftsH mutant cells proved to deleteriously affect cell growth and protein export, suggesting that elimination of uncomplexed SecY is important for optimum protein translocation and for the integrity of the membrane. The primary role of FtsH is discussed in light of the quite pleiotropic mutational effects, which now include stabilization of uncomplexed SecY.
Resumo:
Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels.
Resumo:
Pax-6 is essential for normal eye development and has been implicated as a "master gene" for lens formation in embryogenesis. Guinea pig zeta-crystallin, a taxon-specific enzyme crystallin, achieves high expression specifically in lens through use of an alternative promoter. Here we show that Pax-6 binds a site in this promoter, which is essential for lens-specific expression. Lens and lens-derived cells exhibit a tissue-specific pattern of alternative splicing of Pax-6 transcripts and Pax-6 is expressed in adult lenses and cells that support zeta-crystallin expression. These results suggest that zeta-crystallin is a natural target gene for Pax-6 and that this Pax family member has a direct role in the continuing expression of tissue-specific genes.
Resumo:
In natural streptavidin, tryptophan 120 of each subunit makes contacts with the biotin bound by an adjacent subunit through the dimer-dimer interface. To understand quantitatively the role of tryptophan 120 and its intersubunit communication in the properties of streptavidin, a streptavidin mutant in which tryptophan 120 is converted to phenylalanine was produced and characterized. The streptavidin mutant forms a tetrameric molecule and binds one biotin per subunit, as does natural streptavidin, indicating that the mutation of tryptophan 120 to phenylalanine has no significant effect on the basic properties of streptavidin. However, its biotin-binding affinity was reduced substantially, to approximately 10(8) M-1, indicating that the contact made by tryptophan 120 to biotin has a considerable contribution to the extremely tight biotin binding by streptavidin. The mutant retained bound biotin over a wide pH range or with the addition of urea up to 6 M at neutral pH. However, bound biotin was efficiently released by the addition of excess free biotin due, presumably, to exchange reactions. Electrophoretic analysis revealed that the intersubunit contact made by tryptophan 120 to biotin through the dimer-dimer interface is the major interaction responsible for the biotin-induced, tighter subunit association of streptavidin. In addition, the mutant has weaker subunit association than natural streptavidin even in the absence of biotin, indicating that tryptophan 120 also contributes to the subunit association of tetramers in the absence of biotin.