931 resultados para Error estimator
Resumo:
Adolescence is characterized by dramatic hormonal, physical, and psychological changes, and is a period of risk for affective and anxiety disorders. Pubertal development during adolescence plays a major role in the emergence of these disorders, particularly among girls. Thus, it is critical to identify early biomarkers of risk. One potential biomarker, the error-related negativity (ERN), is an event-related potential following an erroneous response. Individuals with an anxiety disorder demonstrate a greater ERN than healthy comparisons, an association which is stronger in adolescence, suggesting that pubertal development may play a role in the ERN as a predictor of anxiety. One form of anxiety often observed in adolescence, particularly among girls, is social anxiety, which is defined as anxiety elicited by social-evaluative contexts. In adults, enhancements of the ERN in social-evaluative contexts is positively related to social anxiety symptoms, suggesting that the ERN in social contexts may serve as a biomarker for social anxiety. This dissertation examined the ERN in and its relation with puberty and social anxiety among 76 adolescent girls. Adolescent girls completed a flanker task in two different
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
Resumo:
Abstract : Many individuals that had a stroke have motor impairments such as timing deficits that hinder their ability to complete daily activities like getting dressed. Robotic rehabilitation is an increasingly popular therapeutic avenue in order to improve motor recovery among this population. Yet, most studies have focused on improving the spatial aspect of movement (e.g. reaching), and not the temporal one (e.g. timing). Hence, the main aim of this study was to compare two types of robotic rehabilitation on the immediate improvement of timing accuracy: haptic guidance (HG), which consists of guiding the person to make the correct movement, and thus decreasing his or her movement errors, and error amplification (EA), which consists of increasing the person’s movement errors. The secondary objective consisted of exploring whether the side of the stroke lesion had an effect on timing accuracy following HG and EA training. Thirty-four persons that had a stroke (average age 67 ± 7 years) participated in a single training session of a timing-based task (simulated pinball-like task), where they had to activate a robot at the correct moment to successfully hit targets that were presented a random on a computer screen. Participants were randomly divided into two groups, receiving either HG or EA. During the same session, a baseline phase and a retention phase were given before and after each training, and these phases were compared in order to evaluate and compare the immediate impact of HG and EA on movement timing accuracy. The results showed that HG helped improve the immediate timing accuracy (p=0.03), but not EA (p=0.45). After comparing both trainings, HG was revealed to be superior to EA at improving timing (p=0.04). Furthermore, a significant correlation was found between the side of stroke lesion and the change in timing accuracy following EA (r[subscript pb]=0.7, p=0.001), but not HG (r[subscript pb]=0.18, p=0.24). In other words, a deterioration in timing accuracy was found for participants with a lesion in the left hemisphere that had trained with EA. On the other hand, for the participants having a right-sided stroke lesion, an improvement in timing accuracy was noted following EA. In sum, it seems that HG helps improve the immediate timing accuracy for individuals that had a stroke. Still, the side of the stroke lesion seems to play a part in the participants’ response to training. This remains to be further explored, in addition to the impact of providing more training sessions in order to assess any long-term benefits of HG or EA.
Resumo:
We consider the a priori error analysis of hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form under weak assumptions on the mesh design and the local finite element spaces employed. In particular, we prove a priori hp-error bounds for linear target functionals of the solution, on (possibly) anisotropic computational meshes with anisotropic tensor-product polynomial basis functions. The theoretical results are illustrated by a numerical experiment.
Resumo:
El sesgo antiexportador de nuestras economías, el escaso contacto de nuestros empresarios con el extranjero ha producida efectos perjudiciales para nuestro desarrollo, como también ha generado un total desconocimiento de las finanzas internacionales básicas. Es común observar cómo analistas financieros en nuestro medio confunden conceptos que pueden llevar a decisiones erróneas. Estas confusiones se generan por la escasez de bibliografía actualizada en español; todo viene en inglés y esto ya de por sí es un limitarte.
Resumo:
We consider the a posteriori error analysis and hp-adaptation strategies for hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes with anisotropically enriched elemental polynomial degrees. In particular, we exploit duality based hp-error estimates for linear target functionals of the solution and design and implement the corresponding adaptive algorithms to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement and isotropic and anisotropic polynomial degree enrichment. The superiority of the proposed algorithm in comparison with standard hp-isotropic mesh refinement algorithms and an h-anisotropic/p-isotropic adaptive procedure is illustrated by a series of numerical experiments.
Resumo:
583 p.
Resumo:
We introduce a residual-based a posteriori error indicator for discontinuous Galerkin discretizations of the biharmonic equation with essential boundary conditions. We show that the indicator is both reliable and efficient with respect to the approximation error measured in terms of a natural energy norm, under minimal regularity assumptions. We validate the performance of the indicator within an adaptive mesh refinement procedure and show its asymptotic exactness for a range of test problems.
Resumo:
Perspective taking is a crucial ability that guides our social interactions. In this study, we show how the specific patterns of errors of brain-damaged patients in perspective taking tasks can help us further understand the factors contributing to perspective taking abilities. Previous work (e.g., Samson, Apperly, Chiavarino, & Humphreys, 2004; Samson, Apperly, Kathirgamanathan, & Humphreys, 2005) distinguished two components of perspective taking: the ability to inhibit our own perspective and the ability to infer someone else’s perspective. We assessed these components using a new nonverbal false belief task which provided different response options to detect three types of response strategies that participants might be using: a complete and spared belief reasoning strategy, a reality-based response selection strategy in which participants respond from their own perspective, and a simplified mentalising strategy in which participants avoid responding from their own perspective but rely on inaccurate cues to infer the other person’s belief. One patient, with a self-perspective inhibition deficit, almost always used the reality-based response strategy; in contrast, the other patient, with a deficit in taking other perspectives, tended to use the simplified mentalising strategy without necessarily transposing her own perspective. We discuss the extent to which the pattern of performance of both patients could relate to their executive function deficit and how it can inform us on the cognitive and neural components involved in belief reasoning.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
We develop the energy norm a-posteriori error estimation for hp-version discontinuous Galerkin (DG) discretizations of elliptic boundary-value problems on 1-irregularly, isotropically refined affine hexahedral meshes in three dimensions. We derive a reliable and efficient indicator for the errors measured in terms of the natural energy norm. The ratio of the efficiency and reliability constants is independent of the local mesh sizes and weakly depending on the polynomial degrees. In our analysis we make use of an hp-version averaging operator in three dimensions, which we explicitly construct and analyze. We use our error indicator in an hp-adaptive refinement algorithm and illustrate its practical performance in a series of numerical examples. Our numerical results indicate that exponential rates of convergence are achieved for problems with smooth solutions, as well as for problems with isotropic corner singularities.
Resumo:
This lecture course covers the theory of so-called duality-based a posteriori error estimation of DG finite element methods. In particular, we formulate consistent and adjoint consistent DG methods for the numerical approximation of both the compressible Euler and Navier-Stokes equations; in the latter case, the viscous terms are discretized based on employing an interior penalty method. By exploiting a duality argument, adjoint-based a posteriori error indicators will be established. Moreover, application of these computable bounds within automatic adaptive finite element algorithms will be developed. Here, a variety of isotropic and anisotropic adaptive strategies, as well as $hp$-mesh refinement will be investigated.