927 resultados para Error correction coding
Resumo:
Flow in the world's oceans occurs at a wide range of spatial scales, from a fraction of a metre up to many thousands of kilometers. In particular, regions of intense flow are often highly localised, for example, western boundary currents, equatorial jets, overflows and convective plumes. Conventional numerical ocean models generally use static meshes. The use of dynamically-adaptive meshes has many potential advantages but needs to be guided by an error measure reflecting the underlying physics. A method of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahedral finite elements, utilizing an adjoint or goal-based method, is described here. This method is based upon a functional, encompassing important features of the flow structure. The sensitivity of this functional, with respect to the solution variables, is used as the basis from which an error measure is derived. This error measure acts to predict those areas of the domain where resolution should be changed. A barotropic wind driven gyre problem is used to demonstrate the capabilities of the method. The overall objective of this work is to develop robust error measures for use in an oceanographic context which will ensure areas of fine mesh resolution are used only where and when they are required. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Genetic studies of autism spectrum conditions (ASC) have mostly focused on the "low functioning" severe clinical subgroup, treating it as a rare disorder. However, ASC is now thought to be relatively common ( approximately 1%), and representing one end of a quasi-normal distribution of autistic traits in the general population. Here we report a study of common genetic variation in candidate genes associated with autistic traits and Asperger syndrome (AS). We tested single nucleotide polymorphisms in 68 candidate genes in three functional groups (sex steroid synthesis/transport, neural connectivity, and social-emotional responsivity) in two experiments. These were (a) an association study of relevant behavioral traits (the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ)) in a population sample (n=349); and (b) a case-control association study on a sample of people with AS, a "high-functioning" subgroup of ASC (n=174). 27 genes showed a nominally significant association with autistic traits and/or ASC diagnosis. Of these, 19 genes showed nominally significant association with AQ/EQ. In the sex steroid group, this included ESR2 and CYP11B1. In the neural connectivity group, this included HOXA1, NTRK1, and NLGN4X. In the socio-responsivity behavior group, this included MAOB, AVPR1B, and WFS1. Fourteen genes showed nominally significant association with AS. In the sex steroid group, this included CYP17A1 and CYP19A1. In the socio-emotional behavior group, this included OXT. Six genes were nominally associated in both experiments, providing a partial replication. Eleven genes survived family wise error rate (FWER) correction using permutations across both experiments, which is greater than would be expected by chance. CYP11B1 and NTRK1 emerged as significantly associated genes in both experiments, after FWER correction (P<0.05). This is the first candidate-gene association study of AS and of autistic traits. The most promising candidate genes require independent replication and fine mapping.
Resumo:
An in silico screen of 41 of the 81 coding regions of the Nicotiana plastid genome generated a shortlist of 12 candidates as DNA barcoding loci for land plants. These loci were evaluated for amplification and sequence variation against a reference set of 98 land plant taxa. The deployment of multiple primers and a modified multiplexed tandem polymerase chain reaction yielded 85–94% amplification across taxa, and mean sequence differences between sister taxa of 6.1 from 156 bases of accD to 22 from 493 bases of matK. We conclude that loci should be combined for effective diagnosis, and recommend further investigation of the following six loci: matK, rpoB, rpoC1, ndhJ, ycf5 and accD.
Resumo:
The paper considers meta-analysis of diagnostic studies that use a continuous score for classification of study participants into healthy or diseased groups. Classification is often done on the basis of a threshold or cut-off value, which might vary between studies. Consequently, conventional meta-analysis methodology focusing solely on separate analysis of sensitivity and specificity might be confounded by a potentially unknown variation of the cut-off value. To cope with this phenomena it is suggested to use, instead, an overall estimate of the misclassification error previously suggested and used as Youden’s index and; furthermore, it is argued that this index is less prone to between-study variation of cut-off values. A simple Mantel–Haenszel estimator as a summary measure of the overall misclassification error is suggested, which adjusts for a potential study effect. The measure of the misclassification error based on Youden’s index is advantageous in that it easily allows an extension to a likelihood approach, which is then able to cope with unobserved heterogeneity via a nonparametric mixture model. All methods are illustrated at hand of an example on a diagnostic meta-analysis on duplex doppler ultrasound, with angiography as the standard for stroke prevention.
Resumo:
Reanalysis data provide an excellent test bed for impacts prediction systems. because they represent an upper limit on the skill of climate models. Indian groundnut (Arachis hypogaea L.) yields have been simulated using the General Large-Area Model (GLAM) for annual crops and the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40). The ability of ERA-40 to represent the Indian summer monsoon has been examined. The ability of GLAM. when driven with daily ERA-40 data, to model both observed yields and observed relationships between subseasonal weather and yield has been assessed. Mean yields "were simulated well across much of India. Correlations between observed and modeled yields, where these are significant. are comparable to correlations between observed yields and ERA-40 rainfall. Uncertainties due to the input planting window, crop duration, and weather data have been examined. A reduction in the root-mean-square error of simulated yields was achieved by applying bias correction techniques to the precipitation. The stability of the relationship between weather and yield over time has been examined. Weather-yield correlations vary on decadal time scales. and this has direct implications for the accuracy of yield simulations. Analysis of the skewness of both detrended yields and precipitation suggest that nonclimatic factors are partly responsible for this nonstationarity. Evidence from other studies, including data on cereal and pulse yields, indicates that this result is not particular to groundnut yield. The detection and modeling of nonstationary weather-yield relationships emerges from this study as an important part of the process of understanding and predicting the impacts of climate variability and change on crop yields.
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
The paper considers meta-analysis of diagnostic studies that use a continuous Score for classification of study participants into healthy, or diseased groups. Classification is often done on the basis of a threshold or cut-off value, which might vary between Studies. Consequently, conventional meta-analysis methodology focusing solely on separate analysis of sensitivity and specificity might he confounded by a potentially unknown variation of the cut-off Value. To cope with this phenomena it is suggested to use, instead an overall estimate of the misclassification error previously suggested and used as Youden's index and; furthermore, it is argued that this index is less prone to between-study variation of cut-off values. A simple Mantel-Haenszel estimator as a summary measure of the overall misclassification error is suggested, which adjusts for a potential study effect. The measure of the misclassification error based on Youden's index is advantageous in that it easily allows an extension to a likelihood approach, which is then able to cope with unobserved heterogeneity via a nonparametric mixture model. All methods are illustrated at hand of an example on a diagnostic meta-analysis on duplex doppler ultrasound, with angiography as the standard for stroke prevention.
Resumo:
Defensive behaviors, such as withdrawing your hand to avoid potentially harmful approaching objects, rely on rapid sensorimotor transformations between visual and motor coordinates. We examined the reference frame for coding visual information about objects approaching the hand during motor preparation. Subjects performed a simple visuomanual task while a task-irrelevant distractor ball rapidly approached a location either near to or far from their hand. After the distractor ball appearance, single pulses of transcranial magnetic stimulation were delivered over the subject's primary motor cortex, eliciting motor evoked potentials (MEPs) in their responding hand. MEP amplitude was reduced when the ball approached near the responding hand, both when the hand was on the left and the right of the midline. Strikingly, this suppression occurred very early, at 70-80ms after ball appearance, and was not modified by visual fixation location. Furthermore, it was selective for approaching balls, since static visual distractors did not modulate MEP amplitude. Together with additional behavioral measurements, we provide converging evidence for automatic hand-centered coding of visual space in the human brain.
Resumo:
Purpose. Accommodation can mask hyperopia and reduce the accuracy of non-cycloplegic refraction. It is, therefore, important to minimize accommodation to obtain a measure of hyperopia as accurate as possible. To characterize the parameters required to measure the maximally hyperopic error using photorefraction, we used different target types and distances to determine which target was most likely to maximally relax accommodation and thus more accurately detect hyperopia in an individual. Methods. A PlusoptiX SO4 infra-red photorefractor was mounted in a remote haploscope which presented the targets. All participants were tested with targets at four fixation distances between 0.3 and 2 m containing all combinations of blur, disparity, and proximity/looming cues. Thirty-eight infants (6 to 44 weeks) were studied longitudinally, and 104 children [4 to 15 years (mean 6.4)] and 85 adults, with a range of refractive errors and binocular vision status, were tested once. Cycloplegic refraction data were available for a sub-set of 59 participants spread across the age range. Results. The maximally hyperopic refraction (MHR) found at any time in the session was most frequently found when fixating the most distant targets and those containing disparity and dynamic proximity/looming cues. Presence or absence of blur was less significant, and targets in which only single cues to depth were present were also less likely to produce MHR. MHR correlated closely with cycloplegic refraction (r = 0.93, mean difference 0.07 D, p = n.s., 95% confidence interval +/-<0.25 D) after correction by a calibration factor. Conclusions. Maximum relaxation of accommodation occurred for binocular targets receding into the distance. Proximal and disparity cues aid relaxation of accommodation to a greater extent than blur, and thus non-cycloplegic refraction targets should incorporate these cues. This is especially important in screening contexts with a brief opportunity to test for significant hyperopia. MHR in our laboratory was found to be a reliable estimation of cycloplegic refraction. (Optom Vis Sci 2009;86:1276-1286)
Resumo:
Individuals with Williams syndrome (WS) display poor visuo-spatial cognition relative to verbal abilities. Furthermore, whilst perceptual abilities are delayed, visuo-spatial construction abilities are comparatively even weaker, and are characterised by a local bias. We investigated whether his differentiation in visuo-spatial abilities can be explained by a deficit in coding spatial location in WS. This can be measured by assessing participants' understanding of the spatial relations between objects within a visual scene. Coordinate and categorical spatial relations were investigated independently in four participant groups: 21 individuals with WS; 21 typically developing (TD) children matched for non-verbal ability; 20 typically developing controls of a lower non-verbal ability; and 21 adults. A third task measured understanding of visual colour relations. Results indicated first, that the comprehension of categorical and coordinate spatial relations is equally poor in WS. Second, that the comprehension of visual relations is also at an equivalent level to spatial relational understanding in this population. These results can explain the difference in performance on visuo-spatial perception and construction tasks in WS. In addition, both the WS and control groups displayed response biases in the spatial tasks. However, the direction of bias differed across the groups. This finding is explored in relation to current theories of spatial location coding. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Williams syndrome (WS) is a rare genetic disorder with a unique cognitive profile in which verbal abilities are markedly stronger than visuospatial abilities. This study investigated the claim that orientation coding is a specific deficit within the visuospatial domain in WS. Experiment I employed a simplified version of the Benton Judgement of Line Orientation task and a control, length-matching task. Results demonstrated comparable levels of orientation matching performance in the group with WS and a group of typically developing (TD) controls matched by nonverbal ability, although it is possible that floor effects masked group differences. A group difference was observed in the length-matching task due to stronger performance from the control group. Experiment 2 employed an orientation-discrimination task and a length-discrimination task. Contrary to previous reports, the results showed that individuals with WS were able to code by orientation to a comparable level as that of their matched controls. This demonstrates that, although some impairment is apparent, orientation coding does not represent a specific deficit in WS. Comparison between Experiments I and 2 suggests that orientation coding is vulnerable to task complexity. However, once again, this vulnerability does not appear to be specific to the population with WS, as it was also apparent in the TD controls.
Resumo:
The convergence speed of the standard Least Mean Square adaptive array may be degraded in mobile communication environments. Different conventional variable step size LMS algorithms were proposed to enhance the convergence speed while maintaining low steady state error. In this paper, a new variable step LMS algorithm, using the accumulated instantaneous error concept is proposed. In the proposed algorithm, the accumulated instantaneous error is used to update the step size parameter of standard LMS is varied. Simulation results show that the proposed algorithm is simpler and yields better performance than conventional variable step LMS.
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper presents an improved parallel Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We used bashtable into video processing and completed parallel implementation. The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. The implementation contains spatial and temporal approaches. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.