996 resultados para Erich, Rafael
Resumo:
Objectives: The aim of this study was to compare the fracture strength of three techniques used to re-attach tooth fragments in sound and endodontically treated fractured teeth with or without fiber post placement. Material and methods: Ninety human lower incisors were randomly divided into three groups of 30 teeth each. In group A teeth were not subjected to endodontic treatment; while teeth from groups B and C were endodontically treated and the pulp chamber restored with a composite resin. All teeth were fractured by an axial load applied to the buccal area in order to obtain tooth fragments. Teeth from each group were then divided into three subgroups, according to the re-attachment technique: bonded-only, buccal-chamfer and circumferential chamfer. Before the re-attachment procedures, fiber posts were placed in teeth from group C using dual cure resin luting cement (Duo-Link). All teeth (groups A-C) had the fragments re-attached using a same dual cure resin luting cement. in the bonded-only group, no additional preparation was made. After re-attachment of the fragment, teeth from groups buccal and circumferential chamfer groups had a 1.0 mm depth chamfer placed in the fracture line either on buccal surfaceor along the buccal and lingual surfaces, respectively. increments of microhybid composite resin (Tetric Ceram) were used in subgroups buccal chamfer and circumferential chamfer to restore the chamfer. The specimens were loaded until fracture in the same pre-determined area. The force required to detach each fragment was recorded and the data was subjected to a three-way analysis of variance where factors Group and Re-attachment technique are independent measures and Time of fracture is a repeated measure factor (first and second) and Tukey`s test (alpha = 0.05). Results: The main factors Re-attachment technique (p = 0.04) and Time of fracture (p = 0.02) were statistically significant. The buccal and circumferential chamfer techniques were statistically similar (p > 0.05) and superior to the bonded-only group (p < 0.05). The first time of fracture was statistically superior to second time of fracture (p < 0.001). Conclusions: The use of fiber post is not necessary for the reinforcement of the tooth structure in re-attachment of endodontically treated teeth. When bonding a fractured fragment, the buccal or circumferential re-attachment techniques should be preferable in comparison with the simple re-attachment without any additional preparation. None of the techniques used for re-attachment restored the fracture strength of the intact teeth. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the impact of adjuvant chemotherapy on the outcome of osteosarcoma of the extremities, and to identify prognostic factors using the expression of adenomatous polyposis coli (APC), cadherin and beta-catenin Wnt-signalling markers. Methods: The clinical, demographic, anatomic and pathological factors including a detailed analysis of the immunohistochemical expression of cadherin, B-catenin and APC were retrospectively examined in 97 patients with osteosarcoma of the extremities (metastatic and non-metastatic at diagnosis), treated with surgery and/or chemotherapy from 1985 to 2000. Results: APC immunoreactivity showed a statistically significant association with age and serum alkaline phosphatase levels (p = 0.025 and p = 0.038). When survival was the end-point of multivariate analysis, race segregated patients with poor survival as did lack of cadherin expression. For overall survival, cadherin immunoreactivity and the interaction between APC expression and response to adjuvant chemotherapy were significant (p = 0.012 and p < 0.001). No significant clinical association was evident with immunohistochemical expression of cadherin, beta-catenin. Conclusion: Lack of expression of cadherin was a significant variable to overall and disease-free survival. Significantly, positive APC immunoreactivity and adjuvant chemotherapy were associated with a favourable treatment response. Studies using newer immunohistochemical markers within the Wnt-signalling pathway may guide the development of more appropriate therapeutic targets for future individualised treatment. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Glial fibrillary acidic protein (GFAP) is a member of the intermediary filament protein family. It is an important component of astrocytes and a known diagnostic marker of glial differentiation. GFAP is expressed in other neural tumors and pleomorphic adenoma and, less frequently, in cartilage tumors, chordomas, and soft tissue myoepitheliomas. The aim of this study was to evaluate the role of GFAP and its reliability in nonglial tumors as an immunohistochemical marker. We evaluated GFAP gene and protein expression using Q-PCR and immunohistochemistry, respectively, in 81 and 387 cases of soft tissue, bone tumors, and salivary pleomorphic adenomas. Immunohistochemistry staining for GFAP was observed in all osteosarcomas (8 cases), all pleomorphic adenomas (7 cases), in 5 of 6 soft tissue myoepitheliomas, and in 21 of 76 chondrosarcomas. By Q-PCR, GFAP was highly expressed in pleomorphic adenomas and, to a lesser extent, chondrosarcomas, soft tissue myoepitheliomas, and chondroblastic osteosarcomas. The results that we obtained by immunohistochemistry and Q-PCR were well correlated. GFAP is a potential marker for tumors with cartilaginous differentiation, supported by evidence that GFAP is expressed in certain cases of myoepithelial tumors by immunohistochemistry, including soft tissue myoepitheliomas, which are related to cartilaginous differentiation. These findings contribute significantly to the diagnosis of soft tissue myoepitheliomas with cartilaginous differentiation and chondroblastic osteosarcoma in mesenchymal tumors. Modern Pathology ( 2009) 22, 1321-1327; doi: 10.1038/modpathol.2009.99; published online 7 August 2009
Resumo:
The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts` elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post`s long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.
Resumo:
Upper premolars restored with endodontic posts present a high incidence of vertical root fracture (VRF). Two hypotheses were tested: (1) the smaller mesiodistal diameter favors stress concentration in the root and (2) the lack of an effective bonding between root and post increases the risk of VRF. Using finite element analysis, maximum principal stress was analyzed in 3-dimensional intact upper second premolar models. From the intact models, new models were built including endodontic posts of different elastic modulus (E = 37 or E = 200 GPa) with circular or oval cross-section, either bonded or nonbonded to circular or oval cross-section root canals. The first hypothesis was partially confirmed because the conditions involving nonbonded, low-modulus posts showed lower tensile stress for oval canals compared to circular canals. Tensile stress peaks for the nonbonded models were approximately three times higher than for the bonded or intact models, therefore confirming the second hypothesis. (J Endod 2009;35:117-120)
Resumo:
Stress distributions in torsion and wire-loop shear tests were compared using three-dimensional (3-D) linear-elastic finite element method, in an attempt to predict the ideal conditions for testing adhesive strength of dental resin composites to dentin. The torsion test presented lower variability in stress concentration at the adhesive interface with changes in the proportion adhesive thickness/resin composite diameter, as well as lower variability with changes in the resin composite elastic modulus. Moreover, the torsion test eliminated variability from changes in loading distance, and reduced the cohesive fracture tendency in the dentin. The torsion test seems to be more appropriate than wire-loop shear test for testing the resin composite-tooth interface strength. (c) Koninklijke Brill NV, Leiden, 2009
Resumo:
Objectives. Evaluate the effect of testing system compliance on polymerization stress and stress distribution of composites. Methods. Composites tested were Filtek Z250 (FZ), Herculite (HL), Tetric Ceram (TC), Helio Fill-AP (HF) and Heliomolar (HM). Stress was determined in 1-mm thick specimens, inserted between two rods of either poly(methyl methacrylate), PMMA, or glass. Experimental nominal stress (sigma(exp)) was calculated by dividing the maximum force recorded 5 min after photoactivation by the cross-sectional area of the rod. Composites` elastic modulus (E) was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey`s test (alpha = 0.05). Stress distribution on longitudinal (sigma(y)) and transverse (sigma(x)) axes of models representing the composites with the highest and lowest E (FZ and HM, respectively) were evaluated by finite element analysis (FEA). Results. sigma(exp) ranged from 5.5 to 8.8 MPa in glass and from 2.6 to 3.4 MPa in PMMA. Composite ranking was not identical in both substrates, since FZ showed or sigma(exp) statistically higher than HM in glass, while in PMMA FZ showed values similar to the other composites. A strong correlation was found between stress reduction (%) from glass to PMMA and composite`s E (r(2) = 0.946). FEA revealed that system compliance was influenced by the composite (FZ led to higher compliance than HM). sigma(x) distribution was similar in both substrates, while cry distribution showed larger areas of compressive stresses in specimens built on PMMA. Significance. sigma(exp) determined in PMMA was 53-68% lower than in glass. Composite ranking varied slightly due to differences in substrates` longitudinal and transverse deformation. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Finite element analysis (FEA) utilizing models with different levels of complexity are found in the literature to study the tendency to vertical root fracture caused by post intrusion (""wedge effect""). The objective of this investigation was to verify if some simplifications used in bi-dimensional FEA models are acceptable regarding the analysis of stresses caused by wedge effect. Three plane strain (PS) and two axisymmtric (Axi) models were studied. One PS model represented the apical third of the root entirely, in dentin (PS-nG). The other models included gutta-percha in the apical third, and differed regarding dentin-post relationship: bonded (PS-B and Axi-B) or nonbonded (PS-nB and Axi-nB). Mesh discretization and material properties were similar for all cases. Maximum principal stress (sigma(max)) was analyzed as a response to a 165 N longitudinal load. Stress magnitude and orientation varied widely (PS-nG: 10.3 MPa; PS-B: 0.8 MPa; PS-nB: 10.4 MPa; Axi-13: 0.2 MPa, Axi-nB: 10.8 MPa). Axi-nB was the only model where all (sigma(max) vectors at the apical third were perpendicular to the model plane. Therefore, it is adequate to demonstrate the tendency to vertical root fractures caused by wedge effect. Axi-13 showed only part of the (sigma(max) perpendicular to the model plane while PS models showed sigma(max) on the model plane. In these models, sigma(max) orientation did not represent a situation where vertical root fracture would occur due to wedge effect. Adhesion between post and dentin significantly reduced (c) 2007 Wiley Periodicals, Inc.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Tartrate-resistant acid phosphatase (TRAP) is a well-known marker of osteoclasts and bone resorption. Here we have investigated whether osteoblast-like cells (hFOB 1.19) present TRAP activity and how would be its pattern of expression during osteoblastic differentiation. We also observed how the osteoblastic differentiation affected the reduced glutathione levels. TRAP activity was measured using the p-nitrophenylphosphate substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity and mineralized nodule formation. Oxidative stress was determined by HPLC and DNTB assays. TRAP activity and the reduced glutathione-dependent microenvironment were modulated during osteoblastic differentiation. During this phase, TRAP activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day, decreasing thereafter. We demonstrate that TRAP activity is modulated during osteoblastic differentiation, possibly in response to the redox state of the cell, since it seemed to depend on suitable levels of reduced glutathione.
Resumo:
Introduction: The present study evaluated the effect of a reducing agent on the bond strength of deproteinized root canal dentin surfaces when using a self-adhesive versus dual-cured cement. Regional differences were also evaluated. Methods: A total of 45 bovine incisor roots were divided into 3 groups: irrigation with physiologic solution (control), 10-minute deproteinization with 5% NaOCl, and 10-minute deproteinization with 5% NaOCl followed by 10 minutes of 10% ascorbic acid. Fiber posts were cemented with either RelyX 0100 or RelyX ARC (with SingleBond 2 or Clearfil SE Bond). The push-out bond strength was evaluated after 24 hours of storage. Data were submitted to three-way analyses of variance and Dunnett 13 tests (alpha = 0.05). Results: No differences between cements were observed within the testing conditions, regardless of the adhesive (P < .05). Deproteinization reduced bond strengths. Subsequent treatment with ascorbic acid was capable of reversing bond strength value changes to levels similar to those of controls. Regional radicular differences were also found, where coronal > middle > apical. Conclusions: The reducing agent was capable. of reversing the effect of dentin deproteinization, and RelyX U100 behaved similarly to RelyX ARC. (J Endod 2010;36:130-134)
Resumo:
Background. Researchers have proposed the restoration of abfraction lesions, but limited information is available about the effects of occlusal loading on the margins of such restorations. Because abfraction is a well-recognized problem, the authors conducted a study to assess the effects of occlusal loading on the margins of cervical restorations. Methods. The authors prepared 40 wedge-shaped cavities in extracted premolars and restored them with a resin-based composite. They subjected specimens to occlusal loading (150 newtons, 101 cycles) on the buccal cusp, on the central fossa or on the lingual cusp, and they stored 1 the control group, specimens in deionized water. The authors used fluorescein to delimit marginal defects and evaluated the defects by using laser scanning confocal microscopy. Results. Results of chi(2) and Kruskal-Wallis tests (P < .05) showed that specimens subjected to occlusal loading had a higher percentage of marginal gaps (53.3 percent) than did the control specimens (10.0 percent). There were no differences between groups in marginal defect formation or in defect location, length or width. Conclusions. Occlusal loading led to a significant increase in gap formation at the margins of cervical resin-based composite restorations. Clinical Implications. The clinician cannot underestimate the effects of occlusal loading When restoring teeth with cervical wedge-shaped lesions. If occlusal loading is the main factor contributing to lesion formation, the clinician should identify and treat it before placing the restoration or otherwise run the risk that the restorative treatment will fail because of marginal gap formation.
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
Purpose: Nonpassive fit frameworks are believed to lead to implant overload and consequently loss of osseointegration. This is one of the most commonly reported failures of implant prostheses. In an ideal situation of passive fit, when torque is applied to bring the abutment-cylinder interface together some amount of deformation can be expected, and it should be homogeneous along the periphery of the abutment. The aim of this study was to verify the amount of abutment deformation that can be expected when a free-standing cylinder is screwed into place. This could give insight into what should be accepted as passive fit. Materials and Methods: Strain gauges were bonded to the sides of five standard abutments that had machined palladium-silver cylinders or cobalt-chromium cast cylinders screwed into place. Measurements were taken to verify the deformation at each site. Results: Values of abutment deformation after abutment screw tightening ranged from -127.70 to -590.27 mu epsilon. The deformation recorded for palladium-silver prosthetic cylinder tightening ranged from 56.905 to -381.50 mu epsilon (mean: 173.298 mu epsilon) and from -5.62638 to -383.86 mu epsilon ( mean: 200.474 mu epsilon) for cobalt-chromium cylinders. There was no statistically significant difference among the two groups. Conclusion: Both abutment screw tightening and prosthetic cylinder screw tightening result in abutment deformation, which is compressive most of the time. Int J Prosthodont 2009; 22: 391-395.
Resumo:
Objectives. To evaluate the diagnostic value of intraoral palpation at the lateral pterygoid (LP) area as part of the physical examination to detect myofascial pain, according to modified research diagnostic criteria for temporomandibular disorders. Study design. Fouty-four women composed the myofascial pain group, and 33 symptom-free age-matched were the control group. One examiner calibrated and blinded to group distribution performed 2 intraoral bilateral palpations of the lateral pterygoid. Results. The LP area palpation showed sensitivity and specificity values of 79.55% and 77.27%, respectively, and positive and negative likelihood ratios of 3.50 and 0.26, respectively. Conclusions. Palpation at the LP area did not reach acceptable values of specificity, and care must be taken when judging positive response to this procedure.