927 resultados para Erbium doped
Resumo:
The optical and luminescence properties of CaI2 and NaCl doped with divalent thulium are reported for solar energy applications. These halides strongly absorb solar light from the UV up to 900 nm due to the intense Tm2+ 4f13→4f125d1 electronic transitions. Absorption is followed by emission of 1140 nm light due to the 2F5/2→2F7/2 transition of the 4f13 configuration that can be efficiently converted to electric power by thin film CuInSe2 (CIS) solar cells. Because of a negligible spectral overlap between absorption and emission spectra, a luminescent solar concentrator (LSC) based on these black luminescent materials would not suffer from self-absorption losses. The Tm2+ doped halides may therefore lead to efficient semi-transparent power generating windows that absorb solar light over the whole visible spectrum. It will be shown that the power efficiency of the Tm2+ based LSCs can be up to four times higher compared to LSCs based on organic dyes or quantum dots.
Resumo:
Liquid crystal properties make them useful for the development of security devices in applications of authentication and detection of fakes. Induced orientation of liquid crystal molecules and birefringence are the two main properties used in security devices. Employing liquid crystal and dichroic colorants, we have developed devices that show, with the aid of a polarizer, multiple images on each side of the device. Rubbed polyimide is used as alignment layer on each substrate of the LC cell. By rubbing the polyimide in different directions in each substrate it is possible to create any kind of symbols, drawings or motifs with a greyscale; the more complex the created device is, the more difficult is to fake it. To identify the motifs it is necessary to use polarized light. Depending on whether the polarizer is located in front of the LC cell or behind it, different motifs from one or the other substrate are shown. The effect arises from the dopant colour dye added to the liquid crystal, the induced orientation and the twist structure. In practice, a grazing reflection on a dielectric surface is polarized enough to see the effect. Any LC flat panel display can obviously be used as backlight as well.
Resumo:
The preparation of LiNbO3:Er3+/Yb3+ nanocrystals and their up-conversion properties have been studied. It is demonstrated that polyethyleneimine- (PEI) assisted dispersion procedures allow obtaining stable aqueous LiNbO3:Er3+/Yb3+ powder suspensions, with average size particles well below the micron range (100–200 nm) and the isoelectric point of the suspension reaching values well above pH 7. After excitation of Yb3+ ions at a wavelength of 980 nm, the suspensions exhibit efficient, and stable, IR-to-visible (green and red) up-conversion properties, easily observed by the naked eye, very similar to those of the starting crystalline bulk material.
Resumo:
The electronic structure of modified chalcopyrite CuInS2 has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.
Resumo:
The Cu2ZnSnS4 (CZTS) semiconductor is a potential photovoltaic material due to its optoelectronic properties. These optoelectronic properties can be potentially improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using Cr as an impurity. We carried out first-principles calculations within the density functional theory analyzing three substitutions: Cu, Sn, or Zn by Cr. In all cases, the Cr introduces a deeper band into the host energy bandgap. Depending on the substitution, this band is full, empty, or partially full. The absorption coefficients in the independent-particle approximation have also been obtained. Comparison between the pure and doped host's absorption coefficients shows that this deeper band opens more photon absorption channels and could therefo:e increase the solar-light absorption with respect to the host.
Resumo:
The cadmium thioindate spinel CdIn2S4 semiconductor has potential applications for optoelectronic devices. We present a theoretical study of the structural and optoelectronic properties of the host and of the Cr-doped ternary spinel. For the host spinel, we analyze the direct or indirect character of the energy bandgap, the change of the energy bandgap with the anion displacement parameter and with the site cation distribution, and the optical properties. The main effect of the Cr doping is the creation of an intermediate band within the energy bandgap. The character and the occupation of this band are analyzed for two substitutions: Cr by In and Cr by Cd. This band permits more channels for the photon absorption. The optical properties are obtained and analyzed. The absorption coefficients are decomposed into contributions from the different absorption channels and from the inter-and intra-atomic components.