961 resultados para Equipamento comunitário Sociabilidades


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste estudo foi comparar cotas de vértices de uma poligonal, considerando dados coletados por três diferentes receptores GPS, usando como testemunha uma estação total. Os dados foram obtidos em uma poligonal fechada, sendo posteriormente tratados pelo software Topograph. As cotas obtidas pelos três receptores foram confrontadas com aquelas calculadas a partir do levantamento com a estação total, mediante a aplicação do teste t, constatando-se que as mesmas foram satisfatórias para o equipamento GPS Trimble® 4600 LS. Para o equipamento GPS Trimble® modelo PRO XR, as cotas não foram totalmente satisfatórias, mas possíveis de serem consideradas em anteprojetos. Para o equipamento GPS Garmin® de navegação 12 XS, as cotas mostraram-se inaceitáveis para a finalidade estudada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The manufacturing of above and below-knee prosthesis starts by taking surfac measurements of the patient s residual limb. This demands the making of a cartridg with appropriate fitting and customized to the profile of each patient. The traditiona process in public hospitals in Brazil begins with the completion of a record file (according to law nº388, of July 28, 1999 by the ministry of the health) for obtaining o the prosthesis, where it is identified the amputation level, equipment type, fitting type material, measures etc. Nowadays, that work is covered by the Brazilian Nationa Health Service (SUS) and is accomplished in a manual way being used commo measuring tapes characterizing a quite rudimentary, handmade work and without an accuracy.In this dissertation it is presented the development of a computer integrate tool that it include CAD theory, for visualization of both above and below-knee prosthesis in 3D (i.e. OrtoCAD), as well as, the design and the construction a low cos electro-mechanic 3D scanner (EMS). This apparatus is capable to automatically obtain geometric information of the stump or of the healthy leg while ensuring smalle uncertainty degree for all measurements. The methodology is based on reverse engineering concepts so that the EMS output is fed into the above mentioned academi CAD software in charge of the 3D computer graphics reconstruction of the residualimb s negative plaster cast or even the healthy leg s mirror image. The obtained results demonstrate that the proposed model is valid, because it allows the structura analysis to be performed based on the requested loads, boundary conditions, material chosen and wall thickness. Furthermore it allows the manufacturing of a prosthesis cartridge meeting high accuracy engineering patterns with consequent improvement in the quality of the overall production process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hardness test is thoroughly used in research and evaluation of materials for quality control. However, this test results are subject to uncertainties caused by the process operator in the moment of the mensuration impression diagonals make by the indenter in the sample. With this mind, an automated equipment of hardness mensuration was developed. The hardness value was obtained starting from the mensuration of plastic deformation suffered by the material to a well-known load. The material deformation was calculated through the mensuration of the difference between the progress and retreat of a diamond indenter on the used sample. It was not necessary, therefore, the manual mensuration of the diagonals, decreasing the mistake source caused by the operator. Tension graphs of versus deformation could be analyzed from data obtained by the accomplished analysis, as well as you became possible a complete observation of the whole process. Following, the hardness results calculated by the experimental apparatus were compared with the results calculated by a commercial microhardness machine with the intention of testing its efficiency. All things considered, it became possible the materials hardness mensuration through an automated method, which minimized the mistakes caused by the operator and increased the analysis reliability

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to advances in the manufacturing process of orthopedic prostheses, the need for better quality shape reading techniques (i.e. with less uncertainty) of the residual limb of amputees became a challenge. To overcome these problems means to be able in obtaining accurate geometry information of the limb and, consequently, better manufacturing processes of both transfemural and transtibial prosthetic sockets. The key point for this task is to customize these readings trying to be as faithful as possible to the real profile of each patient. Within this context, firstly two prototype versions (α and β) of a 3D mechanical scanner for reading residual limbs shape based on reverse engineering techniques were designed. Prototype β is an improved version of prototype α, despite remaining working in analogical mode. Both prototypes are capable of producing a CAD representation of the limb via appropriated graphical sheets and were conceived to work purely by mechanical means. The first results were encouraging as they were able to achieve a great decrease concerning the degree of uncertainty of measurements when compared to traditional methods that are very inaccurate and outdated. For instance, it's not unusual to see these archaic methods in action by making use of ordinary home kind measure-tapes for exploring the limb's shape. Although prototype β improved the readings, it still required someone to input the plotted points (i.e. those marked in disk shape graphical sheets) to an academic CAD software called OrtoCAD. This task is performed by manual typing which is time consuming and carries very limited reliability. Furthermore, the number of coordinates obtained from the purely mechanical system is limited to sub-divisions of the graphical sheet (it records a point every 10 degrees with a resolution of one millimeter). These drawbacks were overcome by designing the second release of prototype β in which it was developed an electronic variation of the reading table components now capable of performing an automatic reading (i.e. no human intervention in digital mode). An interface software (i.e. drive) was built to facilitate data transfer. Much better results were obtained meaning less degree of uncertainty (it records a point every 2 degrees with a resolution of 1/10 mm). Additionally, it was proposed an algorithm to convert the CAD geometry, used by OrtoCAD, to an appropriate format and enabling the use of rapid prototyping equipment aiming future automation of the manufacturing process of prosthetic sockets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work consists in the analysis of tribologycal properties of basic and multifunctional knitted fabrics. This knowledge has fundamental importance for the textile industry since it can quantify, in an objective way, the tactil. The fabrics used were characterized by friction and mechanical tests for determining the viscoelastic region, wear resistance and friction coefficient of the fabrics used. The stress-strain curve was obtained by the method Kawabata, KES-FB1. Wear tests performed with the aid of equipment Martindale. The measurement of friction coefficient, two methods were used and analyzed comparatively. The first was a method already established worldwide known as KES-FB4 and the second was an innovative method called FRICTORQ, developed by the University of Minho. These two methods were compared taking into account the relative motion between the tribologycal pairs are different from each method. While the first motion is translational, the second is rotational. It was formal that the knitted had a multifunctional fabrics tribologycal performance which was better than the basic knitted fabrics, as the viscoelastic region, was laager highlighting a multifunctional structure, with greater wear resistance mainly on the back side of the knitted fabrics and lower friction coefficient. Performing a comparative analysis between two methods used to measure the friction coefficient, it was formal that both methods were consistent in terms of results. In operational terms, the FRICTORQ showed ease of operation and increased reproducibility of results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, the designs of equipment takes into account the effects and processes of deterioration it will undergo and arrives at an approximate useful life. However, changes in operational processes and parameters, the action of external agents, the kind of maintenance conducted, the means of monitoring, and natural and accidental occurrences completely modify the desired performance of the equipment. The discontinuities that occur in anisotropic materials often and due to different factors evolve from being subcritical to critical acquiring the status of defect and compromising the physical integrity of the equipment. Increasingly sophisticated technological means of detection, monitoring and assessment of these discontinuities are required to respond ever more rapidly to the requirements of industry. This paper therefore presents a VPS (Virtual Pipe System) computational tool which uses the results of ultrasonic tests on equipment, plotting the discontinuities found in models created in the CAD and CAE systems, and then simulates the behavior of these defects in the structure to give an instantaneous view of the final behavior. This paper also presents an alternative method of conventional ultrasonic testing which correlates the integrity of an overlay (carbon steel and stainless steel attached by welding) and the reflection of ultrasonic waves coming from the interface between the two metals, thus making it possible to identify cracks in the casing and a shift of the overlay

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New materials made from industrial wastes have been studied as an alternative to traditional fabrication processes in building and civil engineering. These materials are produced considering some issues like: cost, efficiency and reduction of nvironmental damage. Specifically in cases of materials destined to dwellings in low latitude regions, like Brazilian Northeast, efficiency is related to mechanical and thermal resistance. Thus, when thermal insulation and energetic efficiency are aimed, it s important to increase thermal resistance without depletion of mechanical properties. This research was conducted on a construction element made of two plates of cement mortar, interspersed with a plate of recycled expanded polystyrene (EPS). This component, widely known as sandwich-panel, is commonly manufactured with commercial EPS whose substitution was proposed in this study. For this purpose it was applied a detailed methodology that defines parameters to a rational batching of the elements that constitute the nucleus. Samples of recycled EPS were made in two different values of apparent specific mass (ρ = 65 kg/m³; ρ = 130 kg/m³) and submitted to the Quick-Line 30TM that is a thermophysical properties analyzer. Based on the results of thermal conductivity, thermal capacity and thermal diffusivity obtained, it was possible to assure that recycled EPS has thermal insulation characteristics that qualify it to replace commercial EPS in building and civil engineering industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research this based on the seminar on Use of Natural Fluids in Refrigeration and Air-Conditioning Systems conducted in 2007 in Sao Paulo. The event was inserted in the National Plan for Elimination of CFCs, coordinated by the Ministry of Environment and implemented by the United Nations Development Programme (UNDP). The objective of this research is analyze the performance of the hydrocarbons application as zeotropic mixtures in domestic refrigerator and validate the application of technical standards for pull down and cycling (on-off) tests to the mixture R290/R600a (50:50) in domestic refrigerator. It was first developed an computational analysis of R290/R600a (50:50) compared to R134a and other mass fractions of the hydrocarbons mixtures in the standard ASHRAE refrigeration cycle in order to compare the operational characteristics and thermodynamic properties of fluids based on the software REFPROP 6.0. The characteristics of the Lorenz cycle is presented as an application directed to zeotropic mixtures. Standardized pull down and cycling (on-off) tests were conducted to evaluate the performance of the hydrocarbons mixture R290/R600a (50:50) as a drop-in alternative to R134a in domestic refrigerator of 219 L. The results showed that the use of R290/R600a (50:50) with a charge of refrigerant reduced at 53% compared to R134a presents reduced energy performance than R134a. The COP obtained with hydrocarbon mixture was about 13% lower compared to R134a. Pull down times in the refrigerator compartments for fluids analyzed were quite close, having been found a 4,7% reduction in pull down time for the R290/R600a compared to R134a, in the freezer compartment. The data indicated a higher consumption of electric current from the refrigerator when operating with the R290/R600a. The values were higher than about 3% compared to R134a. The charge of 40 g of R290/R600a proved very low for the equipment analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil industry`s need to produce with maximum efficiency, not to mention the safety and the environment aspects, encourages the optimization of processes. It makes them look for a level of excellence in acquisition of equipment, ensuring the quality without prejudice security of facilities and peoples. Knowing the reliability of equipment and that this stands for a system is fundamental to the production strategy to seeks the maximum return on investment. The reliability analysis techniques have been increasingly applied in the industry as strategy for predicting failures likelihood ensuring the integrity of processes. Some reliability theories underlie the decisions to use stochastic calculations to estimate equipment failure. This dissertation proposes two techniques associating qualitative (through expertise opinion) and quantitative data (European North Sea oil companies fault database, Ored) applied on centrifugal pump to water injection system for secondary oil recovery on two scenarios. The data were processed in reliability commercial software. As a result of hybridization, it was possible to determine the pump life cycle and what impact on production if it fails. The technique guides the best maintenance policy - important tool for strategic decisions on asset management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasma produced by Dielectric Barrier Discharge (DBD) is a promising technique for producing plasma in atmospheric pressure and has been highlighted in several areas, especially in biomedical and textile industry, this is due to the fact that the plasma generated by DBD not reaches high temperatures, enabling use it for thermally sensitive materials. But still it is necessary the development of research related to understanding of the chemical, physical and biological interaction between the non-thermal plasma at atmospheric pressure with cells, tissues, organs and organisms. This work proposes to develop equipment DBD and characterize it in order to obtain a better understanding of the process parameters of plasma production and how it behaves under the parameters adopted in the process, such as distance, frequency and voltage applied between electrodes. For this purpose two techniques were used to characterize distinct from each other. The first was the method of Lissajous figures, this technique is quite effective and accurately for complete electrical characterization equipment DBD. The second technique used was Optical Emission Spectroscopy (EEO) very effective tool for the diagnosis of plasma with it being possible to identify the excited species present in the plasma produced. Finally comparing the data obtained by the two techniques was possible to identify a set of parameters that optimize the production when combined DBD plasma atmosphere in the equipment was built precisely in this condition 0.5mm-15kV 600Hz, giving way for further work