1000 resultados para Equações diferenciais ordinarias - Estudo e ensino
Resumo:
Na concepção deste trabalho, que tem como tema O texto literário na aula de Português L2 – Uma proposta de didactização: Vida e Morte de João Cabafume, de Gabriel Mariano, procurámos investigar e reflectir sobre a abordagem do texto literário no 3º ciclo do ensino secundário cabo-verdiano, especificamente na aula de Português L2, nas áreas de estudos Científica e Tecnológica e Económica e Social, do 11º ano de escolaridade, seguida da apresentação, a título de exemplo, de uma proposta de didactização do texto acima mencionado, na perspectiva da utilização do texto literário como material em que o uso estético da língua potencia a dimensão plural da significação. Para a consecução dos objectivos propostos, procurámos dar visibilidade, na perspectiva da leitura do texto literário, às orientações do programa, às potenciais práticas pedagógicas no ensino de narrativa literária, incluindo os métodos de ensino, os recursos utilizados pelos professores, a forma como os alunos encaram todo o processo de leitura do texto literário em que está envolvido. No entanto, para a concepção da proposta de didactização, procurámos cruzar propostas metodológicas de modelos de leitura e métodos de ensino do texto narrativo e de línguas defendidos por vários autores do campo da didáctica da literatura e das línguas, cujos princípios assentam em bases que valorizam a interacção entre o texto e o leitor. Partindo de um conto de Gabriel Mariano, escritor cabo-verdiano, Vida e Morte de João Cabafume, tentámos propor um roteiro de leitura adequada do texto narrativo, de forma a conduzir o aluno não só na leitura do contexto narrativo, como também na compreensão da dimensão plural da língua enquanto material estético, procurando desenvolver, fundamentalmente, as suas atitudes, os valores éticos e morais e, num âmbito complementar, as suas competências da escrita e da oralidade. Palavras-chave: Texto Literário, Leitura, Escrita, Oralidade, Português L2.
Resumo:
A compreensão do transporte simultâneo de água e solutos a partir de uma fonte pontual permite desenvolver estratégias eficientes na fertirrigação, sendo importante no dimensionamento, operação e manejo de sistemas de irrigação localizada. Assim, o presente trabalho teve como objetivo apresentar a validação de modelo matemático desenvolvido para simular o deslocamento simultâneo de água e potássio na irrigação por gotejamento. O desenvolvimento do modelo baseou-se na resolução numérica de equações diferenciais parciais de segunda ordem, aplicadas à fonte puntiforme sob fluxo transiente de água e solutos. O experimento de validação foi conduzido no Departamento de Engenharia Rural da ESALQ/USP. O solo utilizado foi um Latossolo Vermelho, fase arenosa, série "Sertãozinho", no qual foi aplicada uma solução de cloreto de potássio com concentração de 500 mg L-1 de K, com vazão de 3 L h-1, durante 2 h. Os tempos de amostragem foram 24; 48 e 72 h após o início da irrigação. Observou-se que houve bom ajuste nos valores da distribuição conjunta de água e potássio no bulbo quando foram comparados os dados simulados pelo modelo e os obtidos experimentalmente. A distribuição do potássio ficou limitada às camadas mais internas do bulbo, mostrando que o deslocamento do cátion foi retardado ao interagir com a matriz do solo.
Resumo:
Este trabalho trata de uma visão panorâmica dos principais métodos utilizados, atualmente, na modelagem matemática de processos biológicos. Esses métodos são muito variados, com enfoques que, às vezes, são determinísticos, utilizando a teoria dos sistemas dinâmicos e, às vezes, são probabilísticos, lançando mão das equações diferenciais estocásticas. Em todos eles, entretanto, três fatores inerentes aos processos biológicos não podem deixar de ser considerados: a complexidade, a imprevisibilidade e a diversidade de escalas temporais.
Resumo:
O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.
Resumo:
Neste trabalho são desenvolvidos métodos numéricos para inversão da transformada de Laplace, fazendo-se uso de polinômios trigonométricos e de Laguerre. Sua utilização é ilustrada num problema de fronteira móvel da área de engenharia nuclear, através do algoritmo computacional ALG-619. Uma revisão dos aspectos analíticos básicos da transformada de Laplace e sua utilização na resolução de equações diferenciais parciais é apresentada de maneira suscinta.
Resumo:
Fundamentalmente, o presente trabalho faz uma análise elástica linear de pontes ou vigas curvas assimétricas de seção transversal aberta e de parede fina, com propriedades físicas, geométricas e raio de curvatura constantes ao longo do eixo baricêntrico. Para tanto, utilizaram-se as equações diferenciais de VLASOV considerando o acoplamento entre as deformações nas direções vertical, transversal, axial de torcão nal. Na solução do sistema de quatro equações com derivadas parciais foi utilizado um apropriado método numérico de integração (Diferenças Finitas Centrais). A análise divide-se, basicamente, em dois tipos: análise DINÂMICA e ESTATICA. Ambas são utilizadas também na determinação do coeficiente de impacto (C.M.D.). A primeira refere-se tanto na determinação das características dinâmicas básicas (frequências naturais e respectivos modos de vibração), como também na determinação da resposta dinâmica da viga, em tensões e deformações, para cargas móveis arbitrárias. Vigas com qualquer combinação das condições de contorno, incluindo bordos rotulados e engastados nas três direções de flexão e na torção, são consideradas. 0s resultados da análise teórica, obtidos pela aplicação de programas computacionais implementados em microcomputador (análise estática) e no computador B-6700 (análise dinâmica), são comparados tanto com os da bibliografia técnica como também com resultados experimentais, apresentando boa correlação.
Resumo:
O objetivo deste trabalho é a obtenção de uma técnica para a modelagem otimizada de corpos submetidos a fluxos de alta velocidade, como aerofólios em escoamentos transônicos e outras geometrias aerodinâmicas. A técnica é desenvolvida através de expansões em séries de Fourier para um conjunto de equações diferenciais com interrelação com as condições de contorno, sendo uma equação para a parte superior e outra para a parte inferior do aerofólio. O método de integração temporal empregado baseia-se no esquema explícito de Runge-Kutta de 5 estágios para as equações da quantidade de movimento e na relação de estado para a pressão. Para a aproximação espacial adota-se um esquema em volumes finitos no arranjo co-localizado em diferenças centrais. Utiliza-se dissipação artificial para amortecer as frequências de alta ordem do erro na solução das equações linearizadas. A obra apresenta a solução de escoamentos bi e tridimensionais de fluidos compressíveis transônicos em torno de perfis aerodinâmicos. Os testes num´ericos são realizados para as geometrias do NACA 0012 e 0009 e asas tridimensionais usando as equações de Euler, para número de Mach igual a 0.8 e ® = 0o. Os resultados encontrados comparam favoravelmente com os dados experimentais e numéricos disponíveis na literatura.
Resumo:
A ciência moderna apresentou significativo avanço a partir do desenvolvimento da análise diferencial. A transformação de equações diferenciais de alta ordem em sistemas de equações algébricas foi possível através do desenvolvimento de métodos numéricos, constituindo este, outro grande avanço. Dentro desses pode-se destacar os métodos de diferenças finitas, dos elementos finitos, dos elementos discretos e mais recentemente, os elementos de contorno. Neste trabalho, faz-se uma contribuição ao desenvolvimento do Método dos Elementos Discretos para aplicações na Mecânica do Contínuo, na Mecânica da Fratura, assim como na determinação do dano em elementos estruturais submetidos a cargas. Neste método, a discretização espacial no modelo se realiza mediante um conjunto de massas ligadas entre se por forças materializadas como um arranjo de barras de treliça com rigidez equivalente ao contínuo que se quer representar, e mediante um esquema de integração explícita, se realiza a integração das equações de movimento no tempo. Verifica-se a validade e a capacidade do método em predizer o efeito de tamanho em elementos de concreto e concreto armado, obtendo-se uma excelente correlação com ensaios encontrados na literatura técnica, além de importantes conclusões a respeito da aplicação de cargas estáticas e dinâmicas, tanto em padrões de fissuração ou ruptura, quanto aos valores limites de resistência dos materiais ou cargas aplicadas, dando-se importância na geração aleatória das propriedades dos materiais mediante o uso do Método de Representação Espectral.
Resumo:
A filtragem de imagens visando a redução do ruído é uma tarefa muito importante em processamento de imagens, e encontra diversas aplicações. Para que a filtração seja eficiente, ela deve atenuar apenas o ruído na imagem, sem afetar estruturas importantes, como as bordas. Há na literatura uma grande variedade de técnicas propostas para filçtragem de imagens com preservação de bordas, com as mais variadas abordagens, deentrte as quais podem ser citadas a convolução com máscaras, modelos probabilísticos, redes neurais, minimização de funcionais e equações diferenciais parciais. A transformada wavelet é uma ferramenta matemática que permite a decomposição de sinais e imagens em múltiplas resoluções. Essa decomposição é chamada de representação em wavelets, e pode ser calculada atrravés de um algorítmo piramidal baseado em convoluções com filtros passa-bandas e passa-baixas. Com essa transformada, as bordas podem ser calculadas em múltiplas resoluções. Além disso, como filtros passa-baixas são utilizados na decomposição, a atenuação do ruído é um processo intrínseco à transformada. Várias técnicas baseadas na transformada wavelet têm sido propostas nos últimos anos, com resultados promissores. Essas técnicas exploram várias características da transformada wavelet, tais como a magnitude de coeficientes e sua evolução ao longo das escalas. Neste trabalho, essas características da transformada wavelet são exploradas para a obtenção de novas técnicas de filtragem com preservação das bordas.
Resumo:
Nesta dissertação apresentamos e desenvolvemos o Método de Perron, fazendo uma aplicação ao ploblema de Dirichlet para a equação das superfícies de curvatura média constante em R3. Apresentamos também uma extensão deste método dentro de EDP's e, por fim, obtemos uma extensão geométrica que se aplica a superfícies ao invés de gráficos. Comentamos a aplicação deste método geométrico á existência de superfícies mínimas tendo como bordo duas curvas convexas em planos paralelos do R3.
Resumo:
As técnicas utilizadas em sistemas de reconhecimento automático de locutor (RAL) objetivam identificar uma pessoa através de sua voz, utilizando recursos computacionais. Isso é feito a partir de um modelamento para o processo de produção da voz. A modelagem detalhada desse processo deve levar em consideração a variação temporal da forma do trato vocal, as ressonâncias associadas à sua fisiologia, perdas devidas ao atrito viscoso nas paredes internas do trato vocal, suavidade dessas paredes internas, radiação do som nos lábios, acoplamento nasal, flexibilidade associada à vibração das cordas vocais, etc. Alguns desses fatores são modelados por um sistema que combina uma fonte de excitação periódica e outra de ruído branco, aplicadas a um filtro digital variante no tempo. Entretanto, outros fatores são desconsiderados nesse modelamento, pela simples dificuldade ou até impossibilidade de descrevê-los em termos de combinações de sinais, filtros digitais, ou equações diferenciais. Por outro lado, a Teoria dos Sistemas Dinâmicos Não-Lineares ou Teoria do Caos oferece técnicas para a análise de sinais onde não se sabe, ou não é conhecido, o modelo detalhado do mecanismo de produção desses sinais. A análise através dessa teoria procura avaliar a dinâmica do sinal e, assumindo-se que tais amostras provêm de um sistema dinâmico não-linear, medidas qualitativas podem ser obtidas desse sistema. Essas medidas não fornecem informações precisas quanto ao modelamento do processo de produção do sinal avaliado, isto é, o modelo analítico é ainda inacessível. Entretanto, pode-se aferir a respeito de suaO problema analisado ao longo deste trabalho trata da busca de novos métodos para extrair informações úteis a respeito do locutor que produziu um determinado sinal de voz. Com isso, espera-se conceber sistemas que realizem a tarefa de reconhecer um pessoa automaticamente através de sua voz de forma mais exata, segura e robusta, contribuindo para o surgimento de sistemas de RAL com aplicação prática. Para isso, este trabalho propõe a utilização de novas ferramentas, baseadas na Teoria dos Sistemas Dinâmicos Não-Lineares, para melhorar a caracterização de uma pessoa através de sua voz. Assim, o mecanismo de produção do sinal de voz é analisado sob outro ponto de vista, como sendo o produto de um sistema dinâmico que evolui em um espaço de fases apropriado. Primeiramente, a possibilidade de utilização dessas técnicas em sinais de voz é verificada. A seguir, demonstra-se como as técnicas para estimação de invariantes dinâmicas não-lineares podem ser adaptadas para que possam ser utilizadas em sistemas de RAL. Por fim, adaptações e automatizações algorítmicas para extração de invariantes dinâmicas são sugeridas para o tratamento de sinais de voz. A comprovação da eficácia dessa metodologia se deu pela realização de testes comparativos de exatidão que, de forma estatisticamente significativa, mostraram o benefício advindo das modificações sugeridas. A melhora obtida com o acréscimo de invariantes dinâmicas da forma proposta no sistema de RAL utilizado nos testes resultou na diminuição da taxa de erro igual (EER) em 17,65%, acarretando um intrínseco aumento de processamento. Para sinais de voz contaminados com ruído, o benefício atingido com o sistema proposto foi verificado para relações sinal ruído (SNRs) maiores que aproximadamente 5 dB. O avanço científico potencial advindo dos resultados alcançados com este trabalho não se limita às invariantes dinâmicas utilizadas, e nem mesmo à caracterização de locutores. A comprovação da possibilidade de utilização de técnicas da Teoria do Caos em sinais de voz permitirá expandir os conceitos utilizados em qualquer sistema que processe digitalmente sinais de voz. O avanço das técnicas de Sistemas Dinâmicos Não-Lineares, como a concepção de invariantes dinâmicas mais representativas e robustas, implicará também no avanço dos sistemas que utilizarem esse novo conceito para tratamento de sinais vocais.
Resumo:
A produção de soja é uma das principais atividades econômicas na Região Noroeste do Estado do Rio Grande do Sul. As perdas de produto em condições de comercialização ocasionadas nas atividades de secagem e armazenamento são significativas, justificando a pesquisa e aprimoramento destes processos. Nesta tese foram pesquisados dois problemas: 1. Modelamento matemático dos processos de secagem, utilizando parâmetros conhecidos de soja e 2. Modelamento matemático do problema de aeração para o cálculo da distribuição da pressão e da velocidade do ar na massa de grãos em unidades de armazenamento de soja. No problema de secagem foi desenvolvido um sistema composto de quatro equações diferenciais parciais hiperbólicas acopladas não-lineares, que descreve o comportamento da temperatura e do teor de umidade do ar e dos grãos em função do tempo. Para resolver o sistema foram utilizados os métodos das diferenças finitas (p. ex., métodos de MacCormack e Crank- Nicolson.) e o método dos volumes finitos. A análise dos resultados permitiu recomendar o método mais adequado para cada tipo do problema. Para determinação da intensidade do fluxo de massa e de calor foram utilizados os dados experimentais de camada fina obtidos da literatura e complementados com dados experimentais desta tese. Foi desenvolvido um equipamento para obtenção das curvas de secagem de grãos em secador de leito fixo, a fim de identificar o modelo para secagem em camada espessa. A comparação entre os resultados experimentais e das simulações numéricas mostrou que o modelo descreve razoavelmente a dinâmica de secagem No problema de aeração foi desenvolvido um modelo matemático que descreve o escoamento do ar em sistemas de armazenamento de grãos, baseado em relações experimentais entre velocidade e gradiente de pressão. Para resolver o problema de aeração foi utilizado o método dos elementos finitos e desenvolvido um programa computacional. Um teste realizado com o programa mostrou que os resultados da solução numérica convergem para uma solução analítica conhecida. As simulações realizadas mostraram que o programa computacional pode ser usado como instrumento auxiliar para o projeto de silos, possibilitando o cálculo e a visualização gráfica da distribuição das pressões e das linhas de corrente em diferentes seções do armazém.
Resumo:
Este trabalho tem como objetivo o estudo da matéria nuclear a altas densidades considerando-se as fases hadrônica e de quarks à temperatura nula e finita, com vistas a aplicações no estudo de propriedades estáticas globais de estrelas compactas. Parte dos cálculos apresentados nesta dissertação foram realizados por diferentes autores. Entretanto, em geral, estes trabalhos limitaram-se ao estudo da matéria nuclear em regiões de densidades e temperaturas específicas. Este estudo visa, por sua vez, o desenvolvimento de um tratamento amplo e consistente para estes sistemas, considerando-se diferentes regimes de densidade e temperatura para ambas as fases, hadrônica e de quarks. Buscamos com isso adquirir conhecimento suficiente que possibilite, não somente a ampliação do escopo dos modelos considerados, como também o desenvolvimento, no futuro, de um modelo mais apropriado à descrição de propriedades estáticas e dinâmicas de estrelas compactas. Ainda assim, este trabalho apresenta novos aspectos e resultados inéditos referentes ao estudo da matéria nuclear, como descrevemos a seguir. No estudo da matéria nuclear na fase hadrônica, consideramos os modelos da teoria quântica de campos nucleares desenvolvidos por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, e conhecidos, respectivamente, como Hadrodinâmica Quântica, ZM e Não-Linear. Nestes modelos a matéria nuclear é descrita a partir de uma formulação lagrangeana com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear Neste estudo consideramos inicialmente a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como por exemplo, a massa efetiva do núcleon na matéria nuclear simétrica e de nêutrons. A equação de estado da matéria de nêutrons possibilita a descrição de propriedades estáticas globais de estrelas compactas, como sua massa e raio, através da sua incorporação nas equações de Tolman, Oppenheimer e Volkoff (TOV). Os resultados obtidos nestes cálculos estão em plena concordância com os resultados apresentados por outros autores. Consideramos posteriormente o estudo da matéria nuclear com graus de liberdade de bárions e mésons à temperatura finita, com particular atenção na região de transição de fase. Para este estudo, incorporamos aos modelos considerados, o formalismo da mecânica estatística à temperatura finita. Os resultados obtidos, para as propriedades da matéria nuclear à temperatura finita, concordam também com os resultados obtidos por outros autores. Um aspecto inédito apresentado neste trabalho refere-se à incorporação de valores para os pontos críticos da transição de fase, ainda não determinados por outros autores. O comportamento do calor específico também é analisado de forma inédita nesta dissertação no tratamento utilizado com os modelos Não-Linear e ZM. Utilizamos a equação de estado da matéria de nêutrons à temperatura finita nas equações TOV, determinando propriedades globais de uma estrela protoneutrônica Observamos neste trabalho que ocorre um aumento da massa máxima da estrela com o aumento da temperatura, comportamento este já previsto por outros autores em diferentes modelos. Posteriormente incorporamos ao formalismo à temperatura finita, o equilíbrio químico, a presença de graus de liberdade leptônicos para elétrons e múons e a neutralidade de carga. Apresentamos nesta etapa do trabalho, uma forma alternativa para a incorporação destes ingredientes, baseada na determinação de uma fração relativa entre os potenciais químicos de prótons e nêutrons, à temperatura nula, extendendo este resultado à temperatura finita. Este procedimento permite a determinação da distribuição de núcleons e léptons no interior de uma estrela protoneutrônica, onde incluímos ainda a presença de neutrinos confinados. No estudo da matéria de quarks, consideramos o modelo de sacola do Massachussets Institute of Technology (MIT). Incorporando as equações TOV neste estudo, determinamos propriedades globais de estrelas de quarks, bem como a distribuição dos diferentes sabores de quarks no interior estelar. Como principal resultado, obtivemos uma equação de estado geral para a matéria hadrônica e de quarks, introduzida nas equações TOV, e analisamos a existência de estrelas híbridas. Os resultados obtidos nesta etapa do trabalho são totalmente coerentes com aqueles obtidos por outros autores.
Resumo:
Neste trabalho é resolvido o problema da minimização do volume de estruturas bidimensionais contínuas submetidas a restrições sobre a flexibilidade (trabalho das forças externas) e sobre as tensões, utilizando a técnica chamada otimização topológica, que visa encontrar a melhor distribuição de material dentro de um domínio de projeto pré-estabelecido. As equações de equilíbrio são resolvidas através do método dos elementos finitos, discretizando a geometria e aproximando o campo de deslocamentos. Dessa forma, essas equações diferenciais são transformadas em um sistema de equações lineares, obtendo como resposta os deslocamentos nodais de cada elemento. A distribuição de material é discretizada como uma densidade fictícia constante por elemento finito. Esta densidade define um material isotrópico poroso de uma seqüência pré-estabelecida (SIMP). A otimização é feita através da Programação Linear Seqüencial. Para tal, a função objetivo e as restrições são sucessivamente linearizadas por expansão em Série de Taylor. A análise de sensibilidade para a restrição de flexibilidade é resolvida utilizando o cálculo da sensibilidade analítico adaptado para elementos finitos de elasticidade plana. Quando as restrições consideradas são as tensões, o problema torna-se mais complexo. Diferente da flexibilidade, que é uma restrição global, cada elemento finito deve ter sua tensão controlada. A tensão de Von Mises é o critério de falha considerado, cuja sensibilidade foi calculada de acordo com a metodologia empregada por Duysinx e Bendsøe [Duysinx e Bendsøe, 1998] Problemas como a instabilidade de tabuleiro e dependência da malha sempre aparecem na otimização topológica de estruturas contínuas. A fim de minimizar seus efeitos, um filtro de vizinhança foi implementado, restringindo a variação da densidade entre elementos adjacentes. Restrições sobre as tensões causam um problema adicional, conhecido como singularidade das tensões, fazendo com que os algoritmos não convirjam para o mínimo global. Para contornar essa situação, é empregada uma técnica matemática de perturbação visando modificar o espaço onde se encontra a solução, de forma que o mínimo global possa ser encontrado. Esse método desenvolvido por Cheng e Guo [Cheng e Guo, 1997] é conhecido por relaxação-ε e foi implementado nesse trabalho.