977 resultados para Enzymatic
Resumo:
Production of ethanol from biomass fermentation has gained much attention recently. Biomass cellulosic material is first converted into glucose either by chemical or by enzymatic process, and then glucose is fermented to ethanol. Considering the current scenario, where many efforts are devoted for the search of green routes to obtaining ethanol from renewable sources, this review presents the relationship between structure and properties of cellulosic material, pre-treatments and hydrolysis of cellulosic material, and structure and function of cellulase enzyme complex.
Resumo:
Chitinase is produced by a wide variety of plants as a defense against peste attacks. In this study, grape chitinases were purified 16 times by fractionation in 80% ammonium sulfate followed by dialysis and filtration. Purified chitinases exhibited enzymatic activity toward chitin azure. The yield of purified chitinase was 229 mg/L with chitinase activity of 563 U/g. Chitinases had molecular masses of 24 and 30 kDa, as evaluated by SDS-PAGE 12.5%. Two pH optima were determined 3.0 and 6.0. The optimal temperature was 42 °C. Pre hydrolysis of crystalline shrimp chitin by chitinases caused in an increase in the deacetylation ratio triggered by chitin deacetylase producing chitooligosaccharides with DA (degree acetylation) of 58.8%.
Resumo:
Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products.
Resumo:
The biodegradation of lignocellulosic materials is an important natural process because it is responsible for the carbon recycling. When induced under controlled conditions, this process can be used for technological applications such as biopulping, biobleaching of cellulosic pulps, pre-treatment for subsequent saccharification and cellulosic-ethanol production, and increase of the digestibility in agroindustrial residues used for animal feed. In the present work, the enzymatic and non-enzymatic mechanisms involved in the biodegradation of lignocellulosic materials by fungi were reviewed. Furthermore, the technological applications of these extracellular metabolites are presented and discussed.
Resumo:
A method based on enzymatic activities was developed using three enzymes (glycerokinase, glycerol-3-phosphate oxidase and peroxidase) and colorimetric detection for the determination of glycerol in biodiesel. The enzymatic conversion of glycerol produces H2O2 that is eliminated by the action of peroxidase, an oxygen acceptor and 4- aminoantipirine, producing water and a colored compound, which was analyzed. This method showed good linear correlation coefficient (r = 0.9937) in the concentration range of 4.95 x 10-5 to 3.96 x 10-4% (w/w) and had experimental limits of detection and quantitation of 7.10 x 10-6 and 2.10 x 10-5% (w/w), respectively.
Resumo:
The removal of important textile dyes by turnip peroxidase (TNP) was evaluated. The textile effluents besides the residual dyes contain also chemical auxiliaries such as salts, dispersing and wetting agents. The effect of these was evaluated in the removal of the dyes reactive blue 21 and reactive blue 19 by TNP in synthetic effluents. A decrease of the efficency decolorization was observed. The action of the enzyme on colour removal of dye mixture was equivalent to the dyes alone. The chemical demand of oxygen in the effluent after enzymatic treatment had a significant increase in relation to the untreated effluent.
Resumo:
Ceriporiopsis subvermispora is a selective fungus in the wood delignification and the most promising in biopulping. Through the lipid peroxidation initiated by manganese peroxidase (MnP), free radicals can be generated, which can act in the degradation of lignin nonphenolic structures. This work evaluated the prooxidant activity (based in lipid peroxidation) of enzymatic extracts from wood biodegradation by this fungus in cultures containing exogenous calcium, oxalic acid or soybean oil. It was observed that MnP significant activity is required to promote lipid peroxidation and wood delignification. Positive correlation between prooxidant activity x MnP was observed up to 300 IU kg-1 of wood.
Resumo:
In this work, ¹H Nuclear Magnetic Resonance (¹H NMR) was employed to evaluate changes in apple juice in response to the addition of Panzym® Yieldmash and Ultrazym® AFP-L enzymatic complexes and compare it with premium apple juice. The juice was processed at different temperatures and concentrations of enzymatic complexes. The differences in the results were attributed mainly to the enzyme concentrations, since temperature did not cause any variation. A quantitative analysis indicated that the concentration of fructose increased while the concentrations of sucrose and glucose decreased in response to increasing concentrations of the enzymatic complexes.
Resumo:
Lipases are characterised mainly by catalytic versatility and application in different industrial segments. The aim of this study was to biochemically characterise a lipase from a new strain of Bacillus sp. ITP-001. The isoelectric point and molecular mass were 3.12 and 54 kDa, respectively. The optima lipase activity was 276 U g-1 at pH 7.0 and a temperature of 80 ºC, showing greater stability at pH 5.0 and 37 ºC. Enzymatic activity was stimulated by various ions and pyridine, and inhibited by Cu+ and ethanol. The values of Km and v max were 105.26 mmol and 0.116 mmol min-1 g-1, respectively determined by the Eadie-Scatchard method.
Resumo:
The effect of moisture content in the steam treatment and enzymatic hydrolysis of sugarcane bagasse was evaluated. Steam treatment was perfomed at 195-210 ºC for 4-8 min using cane bagasse with moisture contents in the range 16-100 wt% (dry basis). Increased moisture contents not only had a positive influence in recovery of main cane biomass components but also resulted in better substrates for enzymatic hydrolysis. As a result, drying is not required for optimal pretreatment and enzymatic hydrolysis of sugarcane bagasse, which can be processed into second generation ethanol immediately after crushing and hot water washing.
Resumo:
The data presented describe the development of an enzymatic process in vegetable oils. Six bacterial lipases were tested for their ability to hydrolyze. For each lipase assay, the p-NPP method was applied to obtain maximum enzymatic activities. The lipase from Burkholderia cepacia (lipase B-10) was the most effective in buriti oil, releasing 4840 µmol p-NP mL-1. The lipase from Klebsiella variicola (lipase B-22) was superior in passion fruit oil, releasing 4140 µmol p-NP mL-1 and also in babassu palm oil, releasing 2934 µmol p-NP mL-1. Research into the bioprocessing of oils aims to provide added value for this regional raw material.
Resumo:
The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.
Resumo:
Metals such as copper and zinc are essential for the development and maintenance of numerous enzymatic activities, mitochondrial functions, neurotransmission, and also for memorization and learning. However, disruption in their homeostasis can cause neurodegenerative disorders such as the Alzheimer and Parkinson diseases. In this work, the speciation of copper and zinc in urine samples was carried out. To this end, free and total metal concentrations were determined by square wave anodic stripping voltammetry using a glassy carbon electrode coated with bismuth film. The digestion of the samples was performed in a microwave with the addition of oxidant reagents.
Resumo:
This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB). The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.
Resumo:
Arrabidaea chica (H&B) Verlot is a plant popularly known as Pariri and this species is a known source of anthocyanins, flavonoids and tannins. This report describes an approach involving enzymatic treatment prior to extraction procedures to enhance A chica crude extract anticancer activity. Anticancer activity in human cancer cell lines in vitro using a 48 h SRB cell viability assay was performed to determine growth inhibition and cytotoxic properties. The final extraction yield without enzyme treatment was higher (24.28%) compared to the enzyme-treated material (19.03%), with an enhanced aglycones anthocyanin ratio as determined by HPLC- DAD and LC-MS with direct infusion.