906 resultados para Environmental Microbiology and Microbial Ecology
Resumo:
The effects of continuous tillage on the distribution of soil organic matter (SOM) and aggregates have been well studied for arable soils. However, less is known about the effects of sporadic tillage on SOM and aggregate dynamics in grassland soils. The objectives of the present thesis were (I) to study the longer-term effects of sporadic tillage of grassland on organic carbon (Corg) stocks and the distribution of aggregates and SOM, (II) to investigate the combined effects of sporadic tillage and fertilization on carbon and nitrogen dynamics in grassland soils, and (III) to study the temporal dynamics of Corg stocks, aggregate distribution and microbial biomass in grassland soils. Soil samples were taken in three soil depths (0 – 10 cm; 10 – 25 cm; 25 – 40 cm) from a field trial with loamy sandy soils (Cambisols, Eutric Luvisols, Stagnosols, Anthrosols) north of Kiel, Germany. For Objective I we have sampled soil two and five years after one or two tillage operation(s). Treatments consisted of (i) permanent grassland, (ii) tillage of grassland followed by a re-establishment of grassland and (iii) tillage of grassland followed by a re-establishment of grassland with one season of winter wheat in between. The tillage in grassland led to a reduction in Corg stocks, large macroaggregates (>2000 µm) and SOM in the top 10 cm soil depth. These findings were still significant two years after tillage; however, five years after tillage no longer present. Regarding the soil profile (0 – 40 cm) no significant differences in the mentioned parameters between the tilled plots and the permanent grassland existed. A second tillage event and the insertion of one season of winter wheat did not lead to any further effects on Corg stocks as well as aggregate and SOM concentrations in comparison with a single tillage event in these grassland soils. Treatments adapted for Objective II included (i) long-term grassland and (ii) tillage of grassland followed by a re-establishment of grassland with one season of winter wheat in between. The plots were split and received either 240 kg N ha-1 year-1 in the form of cattle slurry or no cattle slurry application. The application of slurry within a period of four years had no effects on the Corg and total nitrogen stocks or the aggregate distribution, but led to a reduction of free and not physically protected SOM. However, the application of cattle slurry and the grassland renovation seems to change the plant species composition and therefore generalizations on the direct effects are not yet possible. For studying Objective III a further field trial was initiated in September 2010. Soil samples were taken six times within one year (from October 2010 to October 2011) (i) after the conversion from arable land into grassland, (ii) after the tillage of grassland followed by a re-establishment of grassland and (iii) in a permanent grassland. We found an increase in the microbial and fungal biomass after the conversion of arable land into grassland, but no effect on aggregate distribution and Corg stocks. A one-time tillage operation in grassland led to a reduction in large macroaggregates and Corg stocks in the top 10 cm soil depth with no effect on the sampled soil profile. However, we found large variations in the fungal biomass and aggregate distribution within one year in the permanent grassland, presumably caused by environmental factors. Overall, our results suggest that a single tillage operation in grassland soils markedly decreased the concentrations of Corg, larger aggregates and SOM. However, this does not result in long-lasting effects on the above mentioned parameters. The application of slurry cannot compensate the negative effects of a tillage event on aggregate concentrations or Corg stocks. However, while the Corg concentration is not subject to fluctuations within a year, there are large variations of the aggregate distribution even in a permanent grassland soil. Therefore conclusions of results from a single sampling time should be handled with care.
Resumo:
Artisanal columbite-tantalite (coltan) mining has had negative effects on the rural economy in the great Lakes region of Africa through labor deficits, degradation and loss of farmland, food insecurity, high cost of living, and reduced traditional export crop production alongside secondary impacts that remotely affect the quality of air, water, soil, plants, animals, and human wellbeing. The situation is multifaceted and calls for a holistic approach for short and long-term mitigation of such negative effects. This study focuses on the effects of mine land restoration on soil microbiological quality in the Gatumba Mining District of western Rwanda. Some coltan mine wastelands were afforested with pine and eucalyptus trees while farmers directly cultivated others due to land scarcity. Farmyard manure (FYM) is the sole fertilizer applied on the wastelands although it is insufficient to achieve the desired crop yields. Despite this, several multi-purpose plants such as Tithonia diversifolia, Markhamia lutea, and Canavalia brasiliensis thrive in the area and could supplement FYM. The potential for these “new” amendments to improve soil microbial properties, particularly in the tantalite mine soils was investigated. The specific objectives of the study were to: (a) evaluate the effects of land use on soil microbial indices of the tantalite mine soils; (b) investigate the restorative effects of organic amendments on a Technosol; and (c) estimate the short-term N and P supply potential of the soil amendments in the soils. Fresh soils (0-20 cm) from an unmined native forest, two mine sites afforested with pine and eucalyptus forests (pine and eucalyptus Technosols), an arable land, and two cultivated Technosols (Kavumu and Kirengo Technosols) were analyzed for the physicochemical properties. Afterwards, a 28-day incubation (22oC) experiment was conducted followed by measurements of mineral N, soil microbial biomass C, N, P, and fungal ergosterol contents using standard methods. This was followed by a 12-week incubation study of the arable soil and the Kavumu Technosol amended with FYM, Canavalia and Tithonia biomass, and Markhamia leaf litter after which soil microbial properties were measured at 2, 8, and 12 weeks of incubation. Finally, two 4-week incubation experiments each were conducted in soils of the six sites to estimate (i) potential mineralizable N using a soil-sand mixture (1:1) amended with Canavalia and goat manure and (ii) P mineralization mixtures (1:1) of soil and anion exchange resins in bicarbonate form amended with Tithonia biomass and goat manure. In study one, afforestation increased soil organic carbon and total N contents in the pine and eucalyptus Technosols by 34-40% and 28-30%, respectively of that in the native forest soil. Consequently, the microbial biomass and activity followed a similar trend where the cultivated Technosols were inferior to the afforested ones. The microbial indices of the mine soils were constrained by soil acidity, dithionite-extractable Al, and low P availability. In study two, the amendments substantially increased C and N mineralization, microbial properties compared with non-amended soils. Canavalia biomass increased CO2 efflux by 340%, net N mineralization by 30-140%, and microbial biomass C and N by 240-600% and 240-380% (P < 0.01), respectively after four weeks of incubation compared with the non-amended soils. Tithonia biomass increased ergosterol content by roughly 240%. The Kavumu Technosol showed a high potential for quick restoration of its soil quality due to its major responses to the measured biological parameters. In study three, Canavalia biomass gave the highest mineralizable N (130 µg g-1 soil, P < 0.01) in the Kavumu Technosol and the lowest in the native forest soil (-20 µg g-1 soil). Conversely, the mineralizable N of goat manure was negative in all soils ranging from -2.5 µg N g-1 to -7.7 µg N g-1 soil except the native forest soil. However, the immobilization of goat manure N in the “cultivated soils” was 30-70% lower than in the “forest soils” signifying an imminent recovery of the amended soils from N immobilization. The mineralization of goat manure P was three-fold that of Tithonia, constituting 61-71% of total P applied. Phosphorus mineralization slightly decreased after four weeks of incubation due to sulfate competition as reflected in a negative correlation, which was steeper in the Tithonia treatment. In conclusion, each amendment used in this research played a unique role in C, N, and P mineralization and contributed substantially to microbial properties in the tantalite mine soils. Interestingly, the “N immobilizers” exhibited potentials for P release and soil organic carbon storage. Consequently, the combined use of the amendments in specific ratios, or co-composting prior to application is recommended to optimize nutrient release, microbial biomass dynamics and soil organic matter accrual. Transport of organic inputs seems more feasible for smallholder farmers who typically manage small field sizes. To reduce acidity in the soils, liming with wood ash was recommended to also improve P availability and enhance soil biological quality, even if it may only be possible on small areas. Further, afforestation with mixed-species of fast-growing eucalyptus and legume or indigenous tree species are suggested to restore tantalite mine wastelands. It is emphasized most of this research was conducted under controlled laboratory conditions, which exclude interaction with environmental variables. Also fine fractions of the amendments were used compared with the usual practice of applying a mixture of predominantly coarser fractions. Therefore, the biological dynamics reported in the studies here may not entirely reflect those of farmers’ field conditions.
Resumo:
Aquesta tesi doctoral va estudiar la diversitat (riquesa i abundància), la distribució i la dinàmica de les comunitats planctòniques d'Archaea presents a diferents llacs estratificats temperats d'aigua dolça per aportar evidencies sobre la seva distribució i la seva possible activitat en aquests ecosistemes en relació als cicles biogeoquímics presents en els mateixos. Es varen estudiar dos estanyols d'origen càrstic (l'Estanyol del Vilar durant cinc anys consecutius (2001-2005) i l'Estanyol de Can Coromina) i un llac d'origen volcànic (Llac Kivu) analitzant, per una banda, la seva comunitat planctònica d'Archaea mitjançant una aproximació molecular i, per una altra, la seva possible activitat en aquests ambients (p.e., la nitrificació i la fixació de carboni). Per contextualitzar els resultats, es va realitzar un anàlisi in silico dels patrons de distribució global dels Archaea mesòfils mitjançant un anàlisi a nivell de llinatge combinant seqüències del gen 16S rRNA amb diferents eines estadístiques i d'ecologia general.
Resumo:
El presente estudio tiene como objetivo proporcionar una base de conocimiento sólida para la restauración ecológica de ríos, basada en la respuesta de comunidades acuáticas a cambios en la conectividad hídrica, factores medioambientales y presión antrópica. La conectividad hídrica lateral resultó ser el factor principal que estructura hábitats y comunidades acuáticas en el Ebro; mientras que la turbidez, salinidad y concentración de nutrientes fueron factores secundarios. La combinación de estos factores establece un marco ecológico que permite realizar predicciones acerca de los patrones taxonómicos y funcionales con más probabilidades de ocurrir en la llanura del Ebro. La posibilidad de que se creen nuevos humedales de forma natural en el Ebro es muy baja, mientras los que quedan están amenazados por una baja renovación del agua. El objetivo de la restauración ecológica debe por tanto consistir en re-establecer un amplio rango de condiciones hídricas, de acuerdo con el potencial sostenible del ecosistema.
Resumo:
Entre 1999 i 2003 es va desenvolupar un projecte Life de restauració a la maresma de La Pletera, afectada per un pla urbanització, i a la llacuna del Ter Vell, amb un elevat grau d'eutròfia (aiguamolls del Baix Ter, NE Península Ibèrica). L'objectiu d'aquesta tesi és establir el funcionament d'ambdós ecosistemes, analitzar-ne la problemàtica ambiental i avaluar els efectes de la restauració. A la maresma de la Pletera, es va analitzar el paper de la hidrologia en la composició i dinàmica dels nutrients i del zooplàncton en cinc llacunes, tres de les quals havien estat creades dins el projecte de restauració com a nous refugis per una espècie de peix amenaçada (Aphanius iberus). La hidrologia es va caracteritzar per un llarg període de confinament sense entrades d'aigua, interromput de manera irregular per inundacions puntuals. La dinàmica del nitrogen inorgànic es va relacionar amb les entrades d'aigua, mentre que la del fòsfor, del nitrogen total i de la matèria orgànica es va relacionar amb els processos d'acumulació i reciclatge intern durant el confinament. El zooplàncton es va analitzar mitjançant la combinació d'aproximacions taxonòmiques i de mides. L'estructura de mides de la comunitat es va veure més afectada per les interaccions tròfiques (depredació i competència) mentre que l'estructura taxonòmica va ser més sensible a factors abiòtics (nutrients). El ràpid creixement de la població A. iberus en les noves llacunes va suggerir que aquestes havien proporcionat l'hàbitat adequat per a l'espècie, almenys a curt termini. Les actuacions de restauració a la llacuna del Ter Vell es van centrar en la millora de la qualitat de l'aigua mitjançant (1) la construcció d'uns aiguamolls per depurar l'aigua d'entrada i (2) el dragat del sediment en diversos punts. Simultàniament a la restauració, però de forma independent, la gestió agrícola de l'aigua va reduir dràsticament el cabal d'entrada d'aigua dolça a la llacuna, provocant un canvi en el règim hídric. Es van analitzar els efectes a curt termini d'aquest canvi sobre la limnologia i el zooplàncton de la llacuna. Abans del canvi, la hidrologia era artificial ja que s'havia prolongat l'entrada d'aigua dolça d'acord amb la demanda agrícola, i per tant la llacuna presentava una elevada taxa de renovació de l'aigua i majors concentracions de nutrients. Després del canvi, la hidrologia va dependre més del clima, es van reduir les entrades d'aigua i es va allargar el període de confinament. La composició y dinàmica dels nutrients va tendir a assemblar-se a l'observada a les llacunes de la maresma, mentre que la comunitat del zooplàncton no ho va fer. L'estat ecològic de la llacuna va millorar després del canvi en el règim hídric.
Resumo:
Declining grassland breeding bird populations have led to increased efforts to assess habitat quality, typically by estimating density or relative abundance. Because some grassland habitats may function as ecological traps, a more appropriate metric for determining quality may be breeding success. Between 1994 and 2003 we gathered data on the nest fates of Eastern Meadowlarks (Sturnella magna), Bobolinks (Dolichonyx oryzivorous), and Savannah Sparrows (Passerculus sandwichensis) in a series of fallow fields and pastures/hayfields in western New York State. We calculated daily survival probabilities using the Mayfield method, and used the logistic-exposure method to model effects of predictor variables on nest success. Nest survival probabilities were 0.464 for Eastern Meadowlarks (n = 26), 0.483 for Bobolinks (n = 91), and 0.585 for Savannah Sparrows (n = 152). Fledge dates for first clutches ranged between 14 June and 23 July. Only one obligate grassland bird nest was parasitized by Brown-headed Cowbirds (Molothrus ater), for an overall brood parasitism rate of 0.004. Logistic-exposure models indicated that daily nest survival probabilities were higher in pastures/hayfields than in fallow fields. Our results, and those from other studies in the Northeast, suggest that properly managed cool season grassland habitats in the region may not act as ecological traps, and that obligate grassland birds in the region may have greater nest survival probabilities, and lower rates of Brown-headed Cowbird parasitism, than in many parts of the Midwest.
Resumo:
Conservation planning requires identifying pertinent habitat factors and locating geographic locations where land management may improve habitat conditions for high priority species. I derived habitat models and mapped predicted abundance for the Golden-winged Warbler (Vermivora chrysoptera), a species of high conservation concern, using bird counts, environmental variables, and hierarchical models applied at multiple spatial scales. My aim was to understand habitat associations at multiple spatial scales and create a predictive abundance map for purposes of conservation planning for the Golden-winged Warbler. My models indicated a substantial influence of landscape conditions, including strong positive associations with total forest composition within the landscape. However, many of the associations I observed were counter to reported associations at finer spatial extents; for instance, I found Golden-winged Warblers negatively associated with several measures of edge habitat. No single spatial scale dominated, indicating that this species is responding to factors at multiple spatial scales. I found Golden-winged Warbler abundance was negatively related with Blue-winged Warbler (Vermivora cyanoptera) abundance. I also observed a north-south spatial trend suggestive of a regional climate effect that was not previously noted for this species. The map of predicted abundance indicated a large area of concentrated abundance in west-central Wisconsin, with smaller areas of high abundance along the northern periphery of the Prairie Hardwood Transition. This map of predicted abundance compared favorably with independent evaluation data sets and can thus be used to inform regional planning efforts devoted to conserving this species.
Resumo:
There is an imminent need for conservation and best-practice management efforts in marine ecosystems where global-scale declines in the biodiversity and biomass of large vertebrate predators are increasing and marine communities are being altered. We examine two marine-based industries that incidentally take migratory birds in Canada: (1) commercial fisheries, through bycatch, and (2) offshore oil and gas exploration, development, and production. We summarize information from the scientific literature and technical reports and also present new information from recently analyzed data to assess the magnitude and scope of mortality. Fisheries bycatch was responsible for the highest levels of incidental take of migratory bird species; estimated combined take in the longline, gillnet, and bottom otter trawl fisheries within the Atlantic, including the Gulf of St. Lawrence, and Pacific regions was 2679 to 45,586 birds per year. For the offshore oil and gas sector, mortality estimates ranged from 188 to 4494 deaths per year due to the discharge of produced waters resulting in oil sheens and collisions with platforms and vessels; however these estimates for the oil and gas sector are based on many untested assumptions. In spite of the uncertainties, we feel levels of mortality from these two industries are unlikely to affect the marine bird community in Canada, but some effects on local populations from bycatch are likely. Further research and monitoring will be required to: (1) better estimate fisheries-related mortality for vulnerable species and populations that may be impacted by local fisheries, (2) determine the effects of oil sheens from produced waters, and attraction to platforms and associated mortality from collisions, sheens, and flaring, so that better estimates of mortality from the offshore oil and gas sector can be obtained, and (3) determine impacts associated with accidental spills, which are not included in our current assessment. With a better understanding of the direct mortality of marine birds from industry, appropriate mitigation and management actions can be implemented. Cooperation from industry for data collection, research to fill knowledge gaps, and implementation of mitigation approaches will all be needed to conserve marine birds in Canada.
Resumo:
The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.
Resumo:
The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Recent reports show that biogeochemical processes continue when the soil is frozen, but are limited by water availability. However, there is little knowledge about the interactive effects of soil and environmental variables on amounts of unfrozen water in frozen soils. The aims of this study were to determine the contributions of matric and osmotic potentials to the unfrozen water content of frozen soil. We determined the effects of matric and osmotic potential on unfrozen water contents of frozen mineral soil fractions (ranging from coarse sand to fine silt) at -7 degrees C, and estimated the contributions of these potentials to liquid water contents in samples from organic surface layers of boreal soils frozen at -4 degrees C. In the mineral soil fractions the unfrozen water contents appeared to be governed solely by the osmotic potential, but in the humus layers of the sampled boreal soils both the osmotic and matric potentials control unfrozen water content, with osmotic potential contributing 20 to 69% of the total water potential. We also determined pore size equivalents, where unfrozen water resides at -4 degrees C, and found a strong correlation between these equivalents and microbial CO2 production. The larger the pores in which the unfrozen water is found the larger the microbial activity that can be sustained. The osmotic potential may therefore be a key determinant of unfrozen water and carbon dynamics in frozen soil. (C) 2008 Elsevier B.V. All rights reserved.