957 resultados para Environment design
Resumo:
MIT SchMUSE (pronounced "shmooz") is a concurrent, distributed, delegation-based object-oriented interactive environment with persistent storage. It is designed to run in a "capricious" network environment, where servers can migrate from site to site and can regularly become unavailable. Our design introduces a new form of unique identifiers called "globally unique tickets" that provide globally unique time/space stamps for objects and classes without being location specific. Object location is achieved by a distributed hierarchical lazy lookup mechanism that we call "realm resolution." We also introduce a novel mechanism called "message deferral" for enhanced reliability in the face of remote delegation. We conclude with a comparison to related work and a projection of future work on MIT SchMUSE.
Resumo:
Purpose and rationale The purpose of the exploratory research is to provide a deeper understanding of how the work environment enhances or constrains organisational creativity (creativity and innovation) within the context of the advertising sector. The argument for the proposed research is that the contemporary literature is dominated by quantitative research instruments to measure the climate and work environment across many different sectors. The most influential theory within the extant literature is the componential theory of organisational creativity and innovation and is used as an analytical guide (Amabile, 1997; Figure 8) to conduct an ethnographic study within a creative advertising agency based in Scotland. The theory suggests that creative people (skills, expertise and task motivation) are influenced by the work environment in which they operate. This includes challenging work (+), work group supports (+), supervisory encouragement (+), freedom (+), sufficient resources (+), workload pressures (+ or -), organisational encouragement (+) and organisational impediments (-) which is argued enhances (+) or constrains (-) both creativity and innovation. An interpretive research design is conducted to confirm, challenge or extend the componential theory of organisational creativity and innovation (Amabile, 1997; Figure 8) and contribute to knowledge as well as practice. Design/methodology/approach The scholarly activity conducted within the context of the creative industries and advertising sector is in its infancy and research from the alternative paradigm using qualitative methods is limited which may provide new guidelines for this industry sector. As such, an ethnographic case study research design is a suitable methodology to provide a deeper understanding of the subject area and is consistent with a constructivist ontology and an interpretive epistemology. This ontological position is conducive to the researcher’s axiology and values in that meaning is not discovered as an objective truth but socially constructed from multiple realties from social actors. As such, ethnography is the study of people in naturally occurring settings and the creative advertising agency involved in the research is an appropriate purposive sample within an industry that is renowned for its creativity and innovation. Qualitative methods such as participant observation (field notes, meetings, rituals, social events and tracking a client brief), material artefacts (documents, websites, annual reports, emails, scrapbooks and photographic evidence) and focused interviews (informal and formal conversations, six taped and transcribed interviews and use of Survey Monkey) are used to provide a written account of the agency’s work environment. The analytical process of interpreting the ethnographic text is supported by thematic analysis (selective, axial and open coding) through the use of manual analysis and NVivo9 software Findings The findings highlight a complex interaction between the people within the agency and the enhancers and constraints of the work environment in which they operate. This involves the creative work environment (Amabile, 1997; Figure 8) as well as the physical work environment (Cain, 2012; Dul and Ceylan, 2011; Dul et al. 2011) and that of social control and power (Foucault, 1977; Gahan et al. 2007; Knights and Willmott, 2007). As such, the overarching themes to emerge from the data on how the work environment enhances or constrains organisational creativity include creative people (skills, expertise and task motivation), creative process (creative work environment and physical work environment) and creative power (working hours, value of creativity, self-fulfilment and surveillance). Therefore, the findings confirm that creative people interact and are influenced by aspects of the creative work environment outlined by Amabile (1997; Figure 8). However, the results also challenge and extend the theory to include that of the physical work environment and creative power. Originality/value/implications Methodologically, there is no other interpretive research that uses an ethnographic case study approach within the context of the advertising sector to explore and provide a deeper understanding of the subject area. As such, the contribution to knowledge in the form of a new interpretive framework (Figure 16) challenges and extends the existing body of knowledge (Amabile, 1997; Figure 8). Moreover, the contribution to practice includes a flexible set of industry guidelines (Appendix 13) that may be transferrable to other organisational settings.
Using an Outdoor Learning Space to Teach Sustainability and Material Processes in HE product Design.
Resumo:
The world is facing environmental changes that are increasingly affecting how we think about manufacturing, the consumption of products and use of resources. Within the HE product design community, thinking and designing sustainability’ has evolved to become a natural part of the curriculum. Paradoxical as the rise in awareness of sustainability increases there is growing concern within HE product design of the loss of workshop facilities and as a consequence a demise in teaching traditional object-making skills and material experimentation. We suggest the loss of workshops and tangible ‘learning by making skills’ also creates a lost opportunity for a rich learning resource to address sustainable thinking, design and manufacture ‘praxis’ within HE design education. Furthermore, as learning spaces are frequently discussed in design research, there seems to be little focus on how the use of an outdoor environment might influence learning outcomes particularly with regard to material teaching and sustainability. This 'case study' of two jewellery workshops, used outdoor learning spaces to explore both its impact on learning outcomes and to introduce some key principles of sustainable working methodologies and practices. Academics and students mainly from Norway and Scotland collaborated on this international research project. Participants made models from disposable packaging materials, which were cast in tin, in the sand on a local beach, using found timber to create a heat source for melting the metal. This approach of using traditional making skills, materials and nature was found to be a relevant contribution to a sustainable discourse.
Resumo:
Tedd, L.A. & Large, A. (2005). Digital libraries: principles and practice in a global environment. Munich: K.G. Saur.
Resumo:
For many wireless sensor networks applications, indoor light energy is the only ambient energy source commonly available. Many advantages and constraints co-exist in this technology. However, relatively few indoor light powered harvesters have been presented and much research remains to be carried out on a variety of related design considerations and trade-offs. This work presents a solution using the Tyndall mote and an indoor light powered wireless sensor node. It analyses design considerations on several issues such as indoor light characteristics, solar panel component choice, maximum power point tracking, energy storage elements and the trade-offs and choices between them.
Resumo:
With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system.
Resumo:
Wireless sensor networks (WSN) are becoming widely adopted for many applications including complicated tasks like building energy management. However, one major concern for WSN technologies is the short lifetime and high maintenance cost due to the limited battery energy. One of the solutions is to scavenge ambient energy, which is then rectified to power the WSN. The objective of this thesis was to investigate the feasibility of an ultra-low energy consumption power management system suitable for harvesting sub-mW photovoltaic and thermoelectric energy to power WSNs. To achieve this goal, energy harvesting system architectures have been analyzed. Detailed analysis of energy storage units (ESU) have led to an innovative ESU solution for the target applications. Battery-less, long-lifetime ESU and its associated power management circuitry, including fast-charge circuit, self-start circuit, output voltage regulation circuit and hybrid ESU, using a combination of super-capacitor and thin film battery, were developed to achieve continuous operation of energy harvester. Low start-up voltage DC/DC converters have been developed for 1mW level thermoelectric energy harvesting. The novel method of altering thermoelectric generator (TEG) configuration in order to match impedance has been verified in this work. Novel maximum power point tracking (MPPT) circuits, exploring the fractional open circuit voltage method, were particularly developed to suit the sub-1mW photovoltaic energy harvesting applications. The MPPT energy model has been developed and verified against both SPICE simulation and implemented prototypes. Both indoor light and thermoelectric energy harvesting methods proposed in this thesis have been implemented into prototype devices. The improved indoor light energy harvester prototype demonstrates 81% MPPT conversion efficiency with 0.5mW input power. This important improvement makes light energy harvesting from small energy sources (i.e. credit card size solar panel in 500lux indoor lighting conditions) a feasible approach. The 50mm × 54mm thermoelectric energy harvester prototype generates 0.95mW when placed on a 60oC heat source with 28% conversion efficiency. Both prototypes can be used to continuously power WSN for building energy management applications in typical office building environment. In addition to the hardware development, a comprehensive system energy model has been developed. This system energy model not only can be used to predict the available and consumed energy based on real-world ambient conditions, but also can be employed to optimize the system design and configuration. This energy model has been verified by indoor photovoltaic energy harvesting system prototypes in long-term deployed experiments.
Resumo:
The concept of a biofuel cell takes inspiration from the natural capability of biological systems to catalyse the conversion of organic matter with a subsequent release of electrical energy. Enzymatic biofuel cells are intended to mimic the processes occurring in nature in a more controlled and efficient manner. Traditional fuel cells rely on the use of toxic catalysts and are often not easily miniaturizable making them unsuitable as implantable power sources. Biofuel cells however use highly selective protein catalysts and renewable fuels. As energy consumption becomes a global issue, they emerge as important tools for energy generation. The microfluidic platforms developed are intended to maximize the amount of electrical energy extracted from renewable fuels which are naturally abundant in the environment and in biological fluids. Combining microfabrication processes, chemical modification and biological surface patterning these devices are promising candidates for micro-power sources for future life science and electronic applications. This thesis considered four main aspects of a biofuel cell research. Firstly, concept of a miniature compartmentalized enzymatic biofuel cell utilizing simple fuels and operating in static conditions is verified and proves the feasibility of enzyme catalysis in energy conversion processes. Secondly, electrode and microfluidic channel study was performed through theoretical investigations of the flow and catalytic reactions which also improved understanding of the enzyme kinetics in the cell. Next, microfluidic devices were fabricated from cost-effective and disposable polymer materials, using the state-of-the-art micro-processing technologies. Integration of the individual components is difficult and multiple techniques to overcome these problems have been investigated. Electrochemical characterization of gold electrodes modified with Nanoporous Gold Structures is also performed. Finally, two strategies for enzyme patterning and encapsulation are discussed. Several protein catalysts have been effectively immobilized on the surface of commercial and microfabricated electrodes by electrochemically assisted deposition in sol-gel and poly-(o-phenylenediamine) polymer matrices and characterised with confirmed catalytic activity.
Resumo:
The future of many companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Important questions for an engineer who is responsible for the quality of electronic parts such as printed circuit boards (PCBs) during design, production, assembly and after-sales support are: What is the impact of temperature? What is the impact of this temperature on the stress produced in the components? What is the electromagnetic compatibility (EMC) associated with such a design? At present, thermal, stress and EMC calculations are undertaken using different software tools that each require model build and meshing. This leads to a large investment in time, and hence cost, to undertake each of these simulations. This paper discusses the progression towards a fully integrated software environment, based on a common data model and user interface, having the capability to predict temperature, stress and EMC fields in a coupled manner. Such a modelling environment used early within the design stage of an electronic product will provide engineers with fast solutions to questions regarding thermal, stress and EMC issues. The paper concentrates on recent developments in creating such an integrated modeling environment with preliminary results from the analyses conducted. Further research into the thermal and stress related aspects of the paper is being conducted under a nationally funded project, while their application in reliability prediction will be addressed in a new European project called PROFIT.
Resumo:
Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisation of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models used in pperforming fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033.
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the number of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.
Resumo:
The needs for various forms of information systems relating to the European environment and ecosystem are reviewed, and limitations indicated. Existing information systems are reviewed and compared in terms of aims and functionalities. We consider TWO technical challenges involved in attempting to develop an IEEICS. First, there is the challenge of developing an Internet-based communication system which allows fluent access to information stored in a range of distributed databases. Some of the currently available solutions are considered, i.e. Web service federations. The second main challenge arises from the fact that there is general intra-national heterogeneity in the definitions adopted, and the measurement systems used throughout the nations of Europe. Integrated strategies are needed.
Resumo:
Product knowledge support needs are compared in two companies with different production volumes and product complexity. Knowledge support requirements identified include: function, performance data, requirements data, common parts, regulatory guidelines and layout data. A process based data driven knowledge reuse method is evaluated in light of the identified product knowledge needs. The evaluation takes place through developing a pilot case with each company. It is found that the method provides more benefit to the high complexity design domain, in which a significant amount of work takes place at the conceptual design stages, relying on a conceptual product representation. There is not such a clear value proposition in a design environment whose main challenge is layout design and the application of standard parts and features. The method supports the requirement for conceptual product representation but does not fully support a standard parts library.
Resumo:
Awareness of climate change and adaptations of building stock play a key role in the UK government’s environmental agenda. While some European countries and countries like Japan move forward by bringing their sustainability agenda to the public sector, the UK seems to be slow in embracing these ideas and long term sustainability in improved products and processes for better performance, efficiency and innovative application of renewable technology is yet to come. While funding remains a major constraint research show that a number of detrimental issues including; organisation, risk, mind sets of the stakeholders, planning constraints, reluctance to accept change and the unexploited markets are major contributing factors. Most of these barriers can be overcome with research, development and information and knowledge transfer techniques. Educating all stakeholders can act as an accelerator for innovation. This paper examines innovation in the built environment and how research and education can stimulate this process. It explores drivers and barriers for innovation and how research and education in construction, design, engineering and project management can enhance this process. It presents and discusses lessons learnt from two action research projects in relation to innovation.