941 resultados para Entry-Level Jobs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of a five-level K-type system are investigated. With the controlling fields, the properties of the dispersion and absorption of the system are changed greatly. The system can produce anomalous dispersion regions with absorption and normal dispersion regions with absorption or transparency. Furthermore, the group velocity can be varied from subluminal to superluminal by varying the intensity of the controlling field and the probe detunings in principle. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the dispersive properties of excited-doublet four-level atoms interacting with a weak probe field and an intense coupling laser field. We have derived an analytical expression of the dispersion relation for a general excited-doublet four-level atomic system subject to a one-photon detuning. The numerical results demonstrate that for a typical rubidium D1 line configuration, due to the unequal dipole moments for the transitions of each ground state to double excited states, generally there exists no exact dark state in the system. Close to the two-photon resonance, the probe light can be absorbed orgained and propagate in the so-called superluminal form. This system may be used as an optical switch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.

Part II

Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.

Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.

Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STEEL, the Caltech created nonlinear large displacement analysis software, is currently used by a large number of researchers at Caltech. However, due to its complexity, lack of visualization tools (such as pre- and post-processing capabilities) rapid creation and analysis of models using this software was difficult. SteelConverter was created as a means to facilitate model creation through the use of the industry standard finite element solver ETABS. This software allows users to create models in ETABS and intelligently convert model information such as geometry, loading, releases, fixity, etc., into a format that STEEL understands. Models that would take several days to create and verify now take several hours or less. The productivity of the researcher as well as the level of confidence in the model being analyzed is greatly increased.

It has always been a major goal of Caltech to spread the knowledge created here to other universities. However, due to the complexity of STEEL it was difficult for researchers or engineers from other universities to conduct analyses. While SteelConverter did help researchers at Caltech improve their research, sending SteelConverter and its documentation to other universities was less than ideal. Issues of version control, individual computer requirements, and the difficulty of releasing updates made a more centralized solution preferred. This is where the idea for Caltech VirtualShaker was born. Through the creation of a centralized website where users could log in, submit, analyze, and process models in the cloud, all of the major concerns associated with the utilization of SteelConverter were eliminated. Caltech VirtualShaker allows users to create profiles where defaults associated with their most commonly run models are saved, and allows them to submit multiple jobs to an online virtual server to be analyzed and post-processed. The creation of this website not only allowed for more rapid distribution of this tool, but also created a means for engineers and researchers with no access to powerful computer clusters to run computationally intensive analyses without the excessive cost of building and maintaining a computer cluster.

In order to increase confidence in the use of STEEL as an analysis system, as well as verify the conversion tools, a series of comparisons were done between STEEL and ETABS. Six models of increasing complexity, ranging from a cantilever column to a twenty-story moment frame, were analyzed to determine the ability of STEEL to accurately calculate basic model properties such as elastic stiffness and damping through a free vibration analysis as well as more complex structural properties such as overall structural capacity through a pushover analysis. These analyses showed a very strong agreement between the two softwares on every aspect of each analysis. However, these analyses also showed the ability of the STEEL analysis algorithm to converge at significantly larger drifts than ETABS when using the more computationally expensive and structurally realistic fiber hinges. Following the ETABS analysis, it was decided to repeat the comparisons in a software more capable of conducting highly nonlinear analysis, called Perform. These analyses again showed a very strong agreement between the two softwares in every aspect of each analysis through instability. However, due to some limitations in Perform, free vibration analyses for the three story one bay chevron brace frame, two bay chevron brace frame, and twenty story moment frame could not be conducted. With the current trend towards ultimate capacity analysis, the ability to use fiber based models allows engineers to gain a better understanding of a building’s behavior under these extreme load scenarios.

Following this, a final study was done on Hall’s U20 structure [1] where the structure was analyzed in all three softwares and their results compared. The pushover curves from each software were compared and the differences caused by variations in software implementation explained. From this, conclusions can be drawn on the effectiveness of each analysis tool when attempting to analyze structures through the point of geometric instability. The analyses show that while ETABS was capable of accurately determining the elastic stiffness of the model, following the onset of inelastic behavior the analysis tool failed to converge. However, for the small number of time steps the ETABS analysis was converging, its results exactly matched those of STEEL, leading to the conclusion that ETABS is not an appropriate analysis package for analyzing a structure through the point of collapse when using fiber elements throughout the model. The analyses also showed that while Perform was capable of calculating the response of the structure accurately, restrictions in the material model resulted in a pushover curve that did not match that of STEEL exactly, particularly post collapse. However, such problems could be alleviated by choosing a more simplistic material model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have sought to determine the nature of the free-radical precursors to ring-opened hydrocarbon 5 and ring-closed hydrocarbon 6. Reasonable alternative formulations involve the postulation of hydrogen abstraction (a) by a pair of rapidly equilibrating classical radicals (the ring-opened allylcarbinyl-type radical 3 and the ring-closed cyclopropylcarbinyl-type 4), or (b) by a nonclassical radical such as homoallylic radical 7.

[Figure not reproduced.]

Entry to the radical system is gained via degassed thermal decomposition of peresters having the ring-opened and the ring-closed structures. The ratio of 6:5 is essentially independent of the hydrogen donor concentration for decomposition of the former at 125° in the presence of triethyltin hydrdride. A deuterium labeling study showed that the α and β methylene groups in 3 (or the equivalent) are rapidly interchanged under these conditions.

Existence of two (or more) product-forming intermediates is indicated (a) by dependence of the ratio 6:5 on the tin hydride concentration for decomposition of the ring-closed perester at 10 and 35°, and (b) by formation of cage products having largely or wholly the structure (ring-opened or ring-closed) of the starting perester.

Relative rates of hydrogen abstraction by 3 could be inferred by comparison of ratios of rate constants for hydrogen abstraction and ortho-ring cyclization:

[Figure not reproduced.]

At 100° values of ka/kr are 0.14 for hydrogen abstraction from 1,4-cyclohexadiene and 7 for abstraction from triethyltin hydride. The ratio 6:5 at the same temperature is ~0.0035 for hydrogen abstraction from 1,4-cyclohexadiene, ~0.078 for abstraction from the tin hydride, and ≥ 5 for abstraction from cyclohexadienyl radicals. These data indicate that abstraction of hydrogen from triethyltin hydride is more rapid than from 1,4-cyclohexadiene by a factor of ~1000 for 4, but only ~50 for 3.

Measurements of product ratios at several temperatures allowed the construction of an approximate energy-level scheme. A major inference is that isomerization of 3 to 4 is exothermic by 8 ± 3 kcal/mole, in good agreement with expectations based on bond dissociation energies. Absolute rate-constant estimates are also given.

The results are nicely compatible with a classical-radical mechanism, but attempted interpretation in terms of a nonclassical radical precursor of product ratios formed even from equilibrated radical intermediates leads, it is argued, to serious difficulties.

The roles played by hydrogen abstraction from 1,4,-cyclohexadiene and from the derived cyclohexadienyl radicals were probed by fitting observed ratios of 6:5 and 5:10 in the sense of least-squares to expressions derived for a complex mechanistic scheme. Some 30 to 40 measurements on each product ratio, obtained under a variety of experimental conditions, could be fit with an average deviation of ~6%. Significant systematic deviations were found, but these could largely be redressed by assuming (a) that the rate constant for reaction of 4 with cyclohexadienyl radical is inversely proportional to the viscosity of the medium (i.e., is diffusion-controlled), and (b) that ka/kr for hydrogen abstraction from 1,4-cyclohexadiene depends slightly on the composition of the medium. An average deviation of 4.4% was thereby attained.

Degassed thermal decomposition of the ring-opened perester in the presence of the triethyltin hydride occurs primarily by attack on perester of triethyltin radicals, presumably at the –O-O- bond, even at 0.01 M tin hydride at 100 and 125°. Tin ester and tin ether are apparently formed in closely similar amounts under these conditions, but the tin ester predominates at room temperature in the companion air-induced decomposition, indicating that attack on perester to give the tin ether requires an activation energy approximately 5 kcal/mole in excess of that for the formation of tin ester.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An air filled ionization chamber has been constructed with a volume of 552 liters and a wall consisting of 12.7 mg/cm2 of plastic wrapped over a rigid, lightweight aluminum frame. A calibration in absolute units, independent of previous Caltech ion chamber calibrations, was applied to a sealed Neher electrometer for use in this chamber. The new chamber was flown along with an older, argon filled, balloon type chamber in a C-135 aircraft from 1,000 to 40,000 feet altitude, and other measurements of sea level cosmic ray ionization were made, resulting in the value of 2.60 ± .03 ion pairs/cm3 sec atm) at sea level. The calibrations of the two instruments were found to agree within 1 percent, and the airplane data were consistent with previous balloon measurements in the upper atmosphere. Ionization due to radon gas in the atmosphere was investigated. Absolute ionization data in the lower atmosphere have been compared with results of other observers, and discrepancies have been discussed.

Data from a polar orbiting ion chamber on the OGO-II, IV spacecraft have been analyzed. The problem of radioactivity produced on the spacecraft during passes through high fluxes of trapped protons has been investigated, and some corrections determined. Quiet time ionization averages over the polar regions have been plotted as function of altitude, and an analytical fit is made to the data that gives a value of 10.4 ± 2.3 percent for the fractional part of the ionization at the top of the atmosphere due to splash albedo particles, although this result is shown to depend on an assumed angular distribution for the albedo particles. Comparisons with other albedo measurements are made. The data are shown to be consistent with balloon and interplanetary ionization measurements. The position of the cosmic ray knee is found to exhibit an altitude dependence, a North-South effect, and a small local time variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em 1999, o mercado de medicamentos genéricos foi criado no Brasil. Com isso, iniciou-se uma nova fase do mercado farmacêutico brasileiro. Através de dados cedidos pela ANVISA sobre o mercado varejista brasileiro, objetivou-se testar em até que ponto a política de medicamentos genéricos tem logrado êxito. Foram utilizados dados em painel para analisar o impacto da entrada dos medicamentos genéricos sobre a estrutura do mercado, assim como o impacto nos preços e na quantidade vendida entre 2003 e 2007. Os resultados foram favoráveis à diminuição da concentração dos mercados relevantes da amostragem e também ao aumento da quantidade comercializada. Em relação aos preços, o modelo se mostrou pouco significativo, provavelmente pela política de medicamentos genéricos ser um instrumento indireto de controle de preços. De qualquer forma, os resultados encontrados parecem sugerir o bom andamento da política de medicamentos genéricos, o que é um alívio em se tratando de um mercado tão essencial para o bem-estar da população.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most challenging problems in mobile broadband networks is how to assign the available radio resources among the different mobile users. Traditionally, research proposals are either speci c to some type of traffic or deal with computationally intensive algorithms aimed at optimizing the delivery of general purpose traffic. Consequently, commercial networks do not incorporate these mechanisms due to the limited hardware resources at the mobile edge. Emerging 5G architectures introduce cloud computing principles to add flexible computational resources to Radio Access Networks. This paper makes use of the Mobile Edge Computing concepts to introduce a new element, denoted as Mobile Edge Scheduler, aimed at minimizing the mean delay of general traffic flows in the LTE downlink. This element runs close to the eNodeB element and implements a novel flow-aware and channel-aware scheduling policy in order to accommodate the transmissions to the available channel quality of end users.