968 resultados para Entire functions in the Laguerre-Pölya class


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons.We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene.Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-complexity regions (LCRs) in proteins are tracts that are highly enriched in one or a few aminoacids. Given their high abundance, and their capacity to expand in relatively short periods of time through replication slippage, they can greatly contribute to increase protein sequence space and generate novel protein functions. However, little is known about the global impact of LCRs on protein evolution. We have traced back the evolutionary history of 2,802 LCRs from a large set of homologous protein families from H.sapiens, M.musculus, G.gallus, D.rerio and C.intestinalis. Transcriptional factors and other regulatory functions are overrepresented in proteins containing LCRs. We have found that the gain of novel LCRs is frequently associated with repeat expansion whereas the loss of LCRs is more often due to accumulation of amino acid substitutions as opposed to deletions. This dichotomy results in net protein sequence gain over time. We have detected a significant increase in the rate of accumulation of novel LCRs in the ancestral Amniota and mammalian branches, and a reduction in the chicken branch. Alanine and/or glycine-rich LCRs are overrepresented in recently emerged LCR sets from all branches, suggesting that their expansion is better tolerated than for other LCR types. LCRs enriched in positively charged amino acids show the contrary pattern, indicating an important effect of purifying selection in their maintenance. We have performed the first large-scale study on the evolutionary dynamics of LCRs in protein families. The study has shown that the composition of an LCR is an important determinant of its evolutionary pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : Host-Cell Factor 1 (HCF-1) was first discovered in the study of the herpes simplex virus (HSV) infection. HCF-1 is one of the two cellular proteins that compose the VP16-induced complex, a key activator of HSV lytic infection. lncleed, when HSV infects human cells, it is able to enter two modes of infection: lytic or latent. The V`P16-induced complex promotes the lytic mode and in so doing the virus targets important cellular regulatory proteins, such as HCF-1, to manipulate the status of the infected cell. Indeed, HCF-1 regulates human cell proliferation and the cell cycle at different steps. In human, HCF-1 is unusual in that it undergoes a process of proteolytic maturation that results from cleavages at six centrally located 26 amino acid repeats called HCF-1pro repeats. This generates a heterodimeric complex of stably associated amino- (HCF-1n) and carboxy- (HCF-1c) terminal subunits. The absence of the HCF-1 N or HCF-1; subunit leads predominantly to either G1 or M phase defects, respectively. We have hypothesized that HCF-1 forms a heterodimeric complex to permit communication between the two subunits of HCF-1 involved in regulating different phases of the cell cycle. Indeed, there is evidence for such inter-subunit communication because a point mutation called P134S in the HCF-1N subunit in the temperature-sensitive hamster cell line tsBN67 causes, addition to G1- phase defects associated with the HCF-1n subunit, M-phase defects similar to the defects seen upon loss of HCF-1 function. Furthermore, inhibition of the proteolytic maturation of HCF-1 by deletion of the six HCF-1pro repeats (HCF-1Aimo) also leads to M-phase defects, specifically cytokinesis defects leading to binucleation, indicating that there is loss of HCF-15 function in the absence of HCF-1 maturation. I demonstrate that individual point mutations in each of the six HCF-1pro repeats that prevent HCF-1 proteolytic maturation also lead to binucleation; however, this defect can be latgely rescued by the presence of just one HCF-1pRO sequence in I-ICF»1. These results argue that processing itself is important for the HCF-1g function. In fact, until now, the hypothesis was that the proteolytic processing per se is more important for HCF-1C function than the proteolytic processing region. But I show that processing per se is not sufticient to rescue multinucleation, but that the HCF-lpm sequence itself is crucial. This discovery leads to the conclusion that the I-ICF-1pRO repeats have an additional function important for HCF-le function. From the studies of others, one potential function of the HCF-lrxo tepeats is as a binding site for O-link NAcetyl glycosamine tansferase (OGT) to glycosylate an HCF-1n-sunbunit region called the Basic region. This new function suggests the Basic region of HCF-1n is also implicated in the communication between the two subunits. This inter-subunit communication was analyzed in more detail with the studies of the Pl34S mutation and the residues 382-450 region of HCF-l that when removed prevents HCF-l subunit association. I demonstrate that the point mutation also leads to a binucleation defect in Hela cells as well as in the tsBN67 cells. In addition, the effect of this mutation on the regulation of HCF-1c activity seems to interfere with that of the HCF-lpgg repeats because the sum of the deletion of the proteolytic processing region and the point mutation surprisingly leads to re-establishment of correct cytokinesis. The study of the 382-450 HCF-lN region also yielded surprising results. This region important for the association of the two subunits is also important for both HCF-1c function in M phase and G1 phase progression. Thus, I have discovered two main functions of this region: its role in the regulation of HCF-lc function in M phase and its involvement in the regulation of G1/S phase ?- an HCF-1n function. These results support the importance of inter-subunit communication in HCF-1 functions. My research illuminates the understanding of the interaction of the two subunits by showing that the whole HCF-1n subunit is involved in the inter-subunit communication in order to regulate HCF-1c function. For this work, I was concentrated on the study of cytokinesis; the first phenotype showing the role of HCF-1c in the M phase. Then, I extended the study of the M phase with analysis of steps earlier to cytokinesis. Because some defects in the chromosome segregation was already described in the absence of HCF-1, I decided to continue the study of M phase by checking effects on the chromosome segregation. I showed that the HCF-1n subunit and HCF-1pro repeats are both important for this key step of M phase. I show that the binucleation phenotype resulting from deletion or mutation in HCF-1pro repeats, Pl34S point mutation or the lack of the region 382-450 are correlated with micronuclei, and chromosome segregation and alignment defects. This suggests that HCF«lç already regulates M phase during an early step and could be involved in the complex regulation of chromosome segregation. Because one of the major roles of HCF-1 is to be a transcription regulator, I also checked the capacity of HCF-1 to bind to the chromatin in my different cell lines. All my recombinant proteins can bind the chromatin, except for, as previously described, the HCF-1 with the P134S point mutation, This suggests that the binding of HCF-1 to the chromatin is not dependant to the Basic and proteolytic regions but more to the Kelch domain. Thus, if the function of HCF-ig in M phase is dependant to its chromatin association, the intercommunication and the proteolytic region are not involved in the ability to bind to the chromatin but more to bind to the right place of the chromatin or to be associated with the co-factors. Résumé : L'étude de l'infection par le virus Herpes Simplex (HSV) a permis la découverte de la protéine HCF-1 (Host-Cell Factor). HCF-1 est une des protéines cellulaires qui font partie du complexe induit par VP16 ; ce complexe est la clef pour l'activation de la phase lytique de HSV. Afin de manipuler les cellules infectées, le complexe induit pas le VPIG devrait donc cibler les protéines importantes pour la régulation cellulaire, telles que la protéine HCF-1. Cette dernière s'avère donc être un senseur pour la cellule et devrait également jouer un rôle de régulation lors des différentes phases du cycle cellulaire. Chez l'humain, HCF-1 a la particularité de devoir passer par une phase de maturation pour devenir active. Lors de cette maturation, la protéine subit une coupure protéolytique au niveau de six répétitions composées de 26 acides aminés, appelé HCF-1pro repeats. Cette coupure engendre la formation d'un complexe formé de deux sous-unités, HCF-1n et HCF-1c, associées l'une à l'autre de façon stable. Enlever la sous-unité HCF-IN ou C entraîne respectivement des défauts dans la phase G1 et M. Nous pensons donc que HCF-1 forme un complexe hétérodimérique afin de permettre la communication entre les molécules impliquées dans la régulation des différentes phases du cycle cellulaire. Cette hypothèse est déduite suite à deux études: l'une réalisée sur la lignée cellulaire tsBN67 et l'autre portant sur l'inhibition de la maturation protéolytique. La lignée cellulaire tsBN67, sensible à la température, porte la mutation Pl 345 dans la sous-unité HCF-1n. Cette mutation, en plus d'occasionner des défauts dans la phase G1 (défauts liés à la sous-unité HCF-1N), a aussi pour conséquence d'entrainer des défauts dans la phase M, défauts similaires à ceux dus a la perte de la sous-unité HCF-1c. Quant à la maturation protéolytique, l'absence de la région de la protéolyse provoque la binucléation, défaut lié à la cytokinèse, indiquant la perte de la fonction de la sous-unité HCF-1c. Au cours de ma thèse, j'ai démontré que des mutations dans les HCF-1=no repeats, qui bloquent la protéolyse, engendrent la binucléation ; cependant ce défaut peut être corrigé pas l'ajout d'un HCF-1pro repeat dans un HCF-1 ne contenant pas la région protéolytique. Ces résultats soutiennent l'idée que la région protéolytique est importante pour le bon fonctionnement de HCF-1c. En réalité jusqu'a maintenant on supposait que le mécanisme de coupure était plus important que la région impliquée pour la régulation de la fonction de HCF-1;. Mais mon étude montre que la protéolyse n'est pas suffisante pour éviter la binucléation ; en effet, les HCF-1pro repeats semblent jouer le rôle essentiel dans le cycle cellulaire. Cette découverte conduit à la conclusion que les HCF-1pro repeats ont sûrement une fonction autre qui serait cruciale pour la foncton de HCF-1c. Une des fonctions possibles est d'être le site de liaison de l'O-linked N-acetylglucosamine transférase (OGT) qui glycosylerait la région Basique de HCF-1n. Cette nouvelle fonction suggère que la région Basique est aussi impliquée dans la communication entre les deux sous- unités. L'intercommunication entre les deux sous-unités ai été d'ailleurs analysée plus en détail dans mon travail à travers l'étude de la mutation Pl34S et de la région 382-450, essentielle pour l'association des deux sous»unités. J'ai ainsi démontré que la mutation P134S entraînait aussi des défauts dans la cytokinése dans la lignée cellulaire Hela, de plus, son influence sur HCF-1c semble interférer avec celle de la région protéolytique. En effet, la superposition de ces deux modifications dans HCF-1 conduit au rétablissement d'une cytokinése correcte. Concernant la région 382 à 450, les résultats ont été assez surprenants, la perte de cette région provoque l'arrêt du cycle en G1 et la binucléation, ce qui tend à prouver son importance pour le bon fonctionnement de HCF-1n et de HCF-1c. Cette découverte appuie par conséquent l'hypotl1èse d'une intercommunicatzion entre les deux sous-unités mettant en jeu les différentes régions de HCF-1n. Grâce à mes recherches, j'ai pu améliorer la compréhension de l'interaction des deux sous-unités de HCF-1 en montrant que toutes les régions de HCF-1n sont engagées dans un processus d'intercommunication, dont le but est de réguler l'action de HCF-1c. J'ai également mis en évidence une nouvelle étape de la maturation de HCF-1 qui représente une phase importante pour l'activation de la fonction de HCF-1c. Afin de mettre à jour cette découverte, je me suis concentrée sur l'étude de l'impact de ces régions au niveau de la cytokinése qui fut le premier phénotype démontrant le rôle de HCF-1c dans la phase M. A ce jour, nous savons que HCF-1c joue un rôle dans la cytokinèse, nous ne connaissons pas encore sa fonction précise. Dans le but de cerner plus précisément cette fonction, j'ai investigué des étapes ultérieures ai la cytokinèse. Des défauts dans la ségrégation des chromosomes avaient déjà été observés, ai donc continué l'étude en prouvant que HCF-1n et les HCF-1pro repeats sont aussi importants pour le bon fonctionnement de cette étape clef également régulée par HCF-1c. J' ai aussi montré que la région 382-450 et la mutation P134S sont associées à un taux élevé de micronoyaux, de défauts dans la ségrégation des chromosomes. L'une des fonctions principales de HCF-1 étant la régulation de la transcription, j'ai aussi contrôlé la capacité de HCF-1 à se lier à la chromatine après insertion de mutations ou délétions dans HCF-1n et dans la région protéolytique. Or, à l'exception des HCF-1 contenant la mutation P134S, la sous-unité HCF-1c des HCF-1 tronquées se lie correctement à la chromatine. Cette constatation suggère que la liaison entre HCF-1c et chromatine n'est pas dépendante de la région Basique ou Protéolytique mais peut-être vraisemblablement de la région Kelch. Donc si le rôle de HCF-1c est dépendant de sa capacité â activer la transcription, l'intercommunication entre les deux sous-unités et la région protéolytique joueraient un rôle important non pas dans son habileté à se lier à la chromatine, mais dans la capacité de HCF-1 à s'associer aux co-facteurs ou à se placer sur les bonnes régions du génome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery that astrocytes possess a nonelectrical form of excitability (calcium excitability) that leads to the release of chemical transmitters, an activity called gliotransmission, indicates that these cells may have additional important roles in brain function. Elucidating the stimulussecretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. We have recently discovered the existence in astrocytes of functional sub-membrane microdomains of calcium release from the internal stores in response to mGluR5 activation (Marchaland et al., J of Neurosci., 2008). Such sub-plasma membrane calcium microdomains control exocytosis of astrocytic glutamate signaling to neurons. Homer proteins are scaffold proteins controlling calcium signaling in different cellular microdomains, including dendritic spines in neurons (Sala et al., J of Neurosci., 2005). Thus, similarly to dendritic pines, Homer1 could be implicated in the coupling between astrocytic mGluR5 and IP3Rs on the ER. Here, by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the involvement of Homer1 proteins in the calcium dependent stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous CD4(+) T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4(+) T cells in EOC patients with spontaneous immune responses to the antigen are prevalently T(H)1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer(+) cells ex vivo, at an average frequency of 1:25,000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer(+) cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25(+)FOXP3(+)Treg. Thus, spontaneous CD4(+) T-cell responses to ESO in cancer patients are prevalently of T(H)1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Welfare states are often reduced to their role as providers of social protection and redistribution. In 1990, Esping-Andersen argued that they also affect employment creation and the class structure. We analyse the stratification outcomes for three welfare regimes - Britain, Germany and Denmark - over the 1990s and 2000s. Based on individual-level surveys, we observe a disproportionate increase among professionals and managers, and a decline among production workers and clerks. The result is clear-cut occupational upgrading in Denmark and Germany. In Britain, high and low-end service jobs expanded, resulting in a polarized version of upgrading. Growth in low-end service jobs - and thus polarization - is no precondition for full employment. Both Britain and Denmark halved their low-educated unemployment rate between 1995 and 2008. Yet low-end service jobs expanded only in Britain, not in Denmark. The cause is the evolution of labour supply: rising educational attainment means that fewer low-educated workers look for low-skilled jobs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following a scheme of Levin we describe the values that functions in Fock spaces take on lattices of critical density in terms of both the size of the values and a cancelation condition that involves discrete versions of the Cauchy and Beurling-Ahlfors transforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HeCo mouse model is characterized by a subcortical heterotopia formed by misplaced neurons normally migrating into the superficial cortical layers. The mutant mouse has a tendency to epileptic seizures. In my thesis project we discovered the mutated Eml1 gene, a member of the echinoderm microtubule-associated protein (EMAP) family, in HeCo as well as in a family of three children showing complex malformation of cortical development. This discovery formed an important step in exploring the pathogenic mechanisms underlying the HeCo phenotype. In vitro results showed that during cell division the EML1 protein is associated with the midbody and a mutated version of Eml1 highlighted an important role of the protein in the astral MT array during cell cycle. In vivo, we found that already at an early age of cortical development (E13), ectopic progenitors such as RGs (PAX6) and IPCs (TBR2) accumulate in the IZ along the entire neocortex. We demonstrated that in the VZ of the HeCo mouse, spindle orientation and cell cycle exit are perturbed. In later stages (E17), RG fibers are strongly disorganized with deep layer (TBR1) and upper layer (CUX1) neurons trapped within an ectopic mass. At P3, columns of upper layer neurons were present between the heterotopia and the developing cortex; these columns were also present at P7 but at lesser extent. Time lapse video recording (E15.5) revealed that the parameters characterizing the migration of individual neurons are not disturbed in HeCo; however, this analysis showed that the density of migrating neuron was smaller in HeCo. In conclusion, truncated EML1 is likely to play a prominent role during cell cycle but also acts on the cytoskeletal architecture altering the shape of RG fibers thus influencing the pattern of neuronal migration. The signal transduction between external cues and intracellular effector pathways through MTs may be secondary but sustains the heterotopia development and further studies are needed to clarify the impact of EML1 in progenitors versus post-mitotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) mediates the activity of the insulin-sensitizing thiazolidinediones and plays an important role in adipocyte differentiation and fat accretion. The analysis of PPARgamma functions in mature adipocytes is precluded by lethality of PPARgamma(-/-) fetuses and tetraploid-rescued pups. Therefore we have selectively ablated PPARgamma in adipocytes of adult mice by using the tamoxifen-dependent Cre-ER(T2) recombination system. We show that mature PPARgamma-null white and brown adipocytes die within a few days and are replaced by newly formed PPARgamma-positive adipocytes, demonstrating that PPARgamma is essential for the in vivo survival of mature adipocytes, in addition to its well established requirement for their differentiation. Our data suggest that potent PPARgamma antagonists could be used to acutely reduce obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch signalling has an important role in skin homeostasis, promoting keratinocyte differentiation and suppressing tumorigenesis. Here we show that this pathway also has an essential anti-apoptotic function in the keratinocyte UVB response. Notch1 expression and activity are significantly induced, in a p53-dependent manner, by UVB exposure of primary keratinocytes as well as intact epidermis of both mouse and human origin. The apoptotic response to UVB is increased by deletion of the Notch1 gene or down-modulation of Notch signalling by pharmacological inhibition or genetic suppression of 'canonical' Notch/CSL/MAML1-dependent transcription. Conversely, Notch activation protects keratinocytes against apoptosis through a mechanism that is not linked to Notch-induced cell cycle withdrawal or NF-kappaB activation. Rather, transcription of FoxO3a, a key pro-apoptotic gene, is under direct negative control of Notch/HERP transcription in keratinocytes, and upregulation of this gene accounts for the increased susceptibility to UVB of cells with suppressed Notch signalling. Thus, the canonical Notch/HERP pathway functions as a protective anti-apoptotic mechanism in keratinocytes through negative control of FoxO3a expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolution of the neurochemical profile consisting of 19 metabolites after 30 mins of middle cerebral artery occlusion was longitudinally assessed at 3, 8 and 24 h in 6 to 8 microL volumes in the striatum using localized 1H-magnetic resonance spectroscopy at 14.1 T. Profound changes were detected as early as 3 h after ischemia, which include elevated lactate levels in the presence of significant glucose concentrations, decreases in glutamate and a transient twofold glutamine increase, likely to be linked to the excitotoxic release of glutamate and conversion into glial glutamine. Interestingly, decreases in N-acetyl-aspartate (NAA), as well as in taurine, exceeded those in neuronal glutamate, suggesting that the putative neuronal marker NAA is rather a sensitive marker of neuronal viability. With further ischemia evolution, additional, more profound concentration decreases were detected, reflecting a disruption of cellular functions. We conclude that early changes in markers of energy metabolism, glutamate excitotoxicity and neuronal viability can be detected with high precision non-invasively in mice after stroke. Such investigations should lead to a better understanding and insight into the sequential early changes in the brain parenchyma after ischemia, which could be used for identifying new targets for neuroprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given that retroposed copies of genes are presumed to lack the regulatory elements required for their expression, retroposition has long been considered a mechanism without functional relevance. However, through an in silico assay for transcriptional activity, we identify here >1,000 transcribed retrocopies in the human genome, of which at least approximately 120 have evolved into bona fide genes. Among these, approximately 50 retrogenes have evolved functions in testes, more than half of which were recruited as functional autosomal counterparts of X-linked genes during spermatogenesis. Generally, retrogenes emerge "out of the testis," because they are often initially transcribed in testis and later evolve stronger and sometimes more diverse spatial expression patterns. We find a significant excess of transcribed retrocopies close to other genes or within introns, suggesting that retrocopies can exploit the regulatory elements and/or open chromatin of neighboring genes to become transcribed. In direct support of this hypothesis, we identify 36 retrocopy-host gene fusions, including primate-specific chimeric genes. Strikingly, 27 intergenic retrogenes have acquired untranslated exons de novo during evolution to achieve high expression levels. Notably, our screen for highly transcribed retrocopies also uncovered a retrogene linked to a human recessive disorder, gelatinous drop-like corneal dystrophy, a form of blindness. These functional implications for retroposition notwithstanding, we find that the insertion of retrocopies into genes is generally deleterious, because it may interfere with the transcription of host genes. Our results demonstrate that natural selection has been fundamental in shaping the retrocopy repertoire of the human genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: In the present review, we will provide the scientific rationale for applying systems biology to the development of vaccines and particularly HIV vaccines, the predictive power of systems biology on the vaccine immunological profile, the correlation between systems biology and the immunological functional profiles of different candidate vaccines, and the value of systems biology in the selection process of identifying the best-in-class candidate vaccines and in the decision process to move into in-vivo evaluation in clinical trials. RECENT FINDINGS: Systems biology has been recently applied to the characterization of the protective yellow fever vaccine YF17D and of seasonal flu vaccines. This has been instrumental in the identification of the components of the immune response that need to be stimulated by the vaccine in order to generate protective immunity. It is worth noting that a systems biology approach is currently being performed to identify correlates of immune protection of the RV144 Thai vaccine, the only known vaccine that showed modest protection against HIV reacquisition. SUMMARY: Systems biology represents a novel and powerful approach to predict the vaccine immunological profile, to identify the protective components of the immune response, and to help in the selection process of the best-in-class vaccines to move into clinical development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cells play a primordial role in antiviral immunity. Virus-specific T-cell responses can be characterized by a number of independent variables. These include the magnitude of the response; the functional quality of the response, i.e. the types of cytokines secreted after stimulation and the proliferative or lytic potential; the tissue distribution of the T cells; the breadth of the response; and the avidity of the response. All of these together constitute the T-cell response to antigen (Ag) and comprise potential variables that may correlate with antiviral protective immunity. Substantial advances have recently been obtained in the characterization of virus-specific T-cell responses. These studies have shown that the quality (in term of functional profile) rather than the quantity of Ag-specific T cells was associated with protection. Recently, the term polyfunctional has been used to define T-cell responses that, in addition to typical effector functions such as secretion of IFN-g, TNF-a and MIP-1b and cytotoxic activity, comprise distinct T-cell populations, also able to secrete IL-2 and retaining Ag-specific proliferation capacity. The term \only effector" defines T-cell responses/ populations able to secrete cytokines such as IFN-g, TNF-a and MIP-1b and endowed with cytotoxic activity but lacking IL-2 and proliferation capacity. Several models of virus infections (HIV-1, cytomegalovirus [CMV], Epstein Barr virus [EBV], influenza [Flu] and Herpes Simplex virus) exclusively differentiated on the basis of Ag exposure and persistence, were investigated: 1) antigen clearance, 2) protracted Ag exposure and persistence and low Ag levels, 3) Ag persistence and high Ag levels, and 4) acute Ag exposure/re-exposure. These analyses have demonstrated that polyfunctional and not \only effector" T-cell responses were associated with protective antiviral immunity. However, the factors and mechanisms governing the generation of functionally distinct T-cell populations remain to be elucidated. Recently, several studies have shown a major influence of HLA genotype in the evolution of HIV and the progression of HIV-associated disease. In particular, certain HLA-B alleles were most closely associated with non-progressive disease and low viral load or disease and had a dominant involvement on the clinical course of HIV-associated diseases. In this study, we have investigated the relationship between HLA restriction and the functional profile of Tcell responses in order to determine whether HLA-B influenced the generation of polyfunctional CD8 T-cell responses. To be able to address this issue, we studied CD8 T-cell responses against HIV-1, CMV, EBV and Flu in 128 subjects. These analyses enabled us to demonstrate that HLA-Arestricted epitopes were mostly associated with \only effector" T-cell responses while, in contrast, polyfunctional CD8 T-cell responses were predominantly driven by virus epitopes restricted by HLA-B alleles. We then characterized eventual differences in the responsiveness of CD8 T-cell populations restricted by different HLA-A and HLA-B alleles. For this purpose, we investigated the T-cell receptor (TCR) avidity for the cognate epitope of polyfunctional and \only effector" CD8 T-cell populations. Our results indicated that overall virus-specific CD8 T-cell populations recognizing virus epitopes restricted by HLA-B alleles were equipped with lower avidity TCR for the cognate epitopes when compared to those recognizing epitopes restricted by HLA-A alleles. In conclusion, these results provide the rationale for the observed protective role of HLA-B genotypes in HIV-1- infection and new insights into the relationship between TCR avidity and functional profile of virus-specific CD8 Tcells.