892 resultados para Energy storage.
Resumo:
The consumption of excess alcohol in patients with liver iron storage diseases, in particular the iron-overload disease hereditary haemochromatosis (HH), has important clinical consequences. HH, a common genetic disorder amongst people of European descent, results in a slow, progressive accumulation of excess hepatic iron. If left untreated, the condition may lead to fibrosis, cirrhosis and primary hepatocellular carcinoma. The consumption of excess alcohol remains an important cause of hepatic cirrhosis and alcohol consumption itself may lead to altered iron homeostasis. Both alcohol and iron independently have been shown to result in increased oxidative stress causing lipid peroxidation and tissue damage. Therefore, the added effects of both toxins may exacerbate the pathogenesis of disease and impose an increased risk of cirrhosis. This review discusses the concomitant effects of alcohol and iron on the pathogenesis of liver disease. We also discuss the implications of co-existent alcohol and iron in end-stage liver disease.
Resumo:
This study aimed to develop a practical method of estimating energy expenditure (EE) during tennis. Twenty-four elite female tennis players first completed a tennis-specific graded test in which five different intensity levels were applied randomly. Each intensity level was intended to simulate a game of singles tennis and comprised six 14 s periods of activity alternated with 20 s of active rest. Oxygen consumption (VO2) and heart rate (HR) were measured continuously and each player's rate of perceived exertion (RPE) was recorded at the end of each intensity level. Rate of energy expenditure (EEVO2) during the test was calculated using the sum of VO2 during play and the 'O-2 debt' during recovery, divided by the duration of the activity. There were significant individual linear relationships between EEVO2 and RPE, EEVO2 and HR, (rgreater than or equal to0.89 rgreater than or equal to0.93; p
Resumo:
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Two varieties of adzuki beans (Vigna angularis), Bloodwood and Erimo, were stored at temperatures of 10, 20 or 30degreesC, and relative humidities (RH) 40 or 65%, and samples were analysed at 0, 1.5, 3 and 6 months. Storage at 30degreesC for > 1.5 months caused a significant decrease in the a(star) and b(star) colour values and darkening of the seed coat. Beans stored at 65% RH had lower L-star but higher a(star) and b(star) colour values than those stored at 40% RH. Bloodwood and Erimo samples showed similar trends in colour during storage. The best storage conditions for the preservation of the adzuki colour were 10degreesC and 65% RH. The Australian beans had lower L-star, a(star) and b(star) colour values than Japanese Erimo-shouzu beans and storage increased the difference.
Resumo:
Two varieties of adzuki grown in Australia, Bloodwood and Erimo, were stored for up to 6 months at three temperatures (10, 20 and 30 degreesC), and two relative humidities (RH; 40 and 65%). The amount of cell wall material increased with time under all storage conditions. This increase was greatest at 30 degreesC and 40% RH. Storage time and conditions did not affect the total pectin levels in the cell wall. Erimo constantly exhibited a higher total pectin level than Bloodwood. The Bloodwood soluble pectin, Ca++ and Mg++ and Erimo Ca++ in the cell wall remained stable during storage, while the Erimo soluble pectin and Mg++ exhibited a slight decrease at 20 and 30 degreesC after 3 months of storage. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)(2) and [ZnL4b](ClO4)(2) were determined by time-resolved fluorescence where L-4a and L-4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (k(EET)) of 8.7 x 10(8) s(-1), whereas that of the cis isomer is significantly faster (2.3 x 10(9) s(-1)). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by H-1 NMR for the [ZnL4a](2+) trans complex in the common trans-III N-based isomer gave a calculated Forster rate constant close to that observed experimentally. For the [ZnL4b](2+) cis complex, the experimentally determined rate constant may be attributed to a combination of trans-Ill and trans-I N-based isomeric forms of the complex in solution.
Resumo:
Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.
Resumo:
Recent observations from type Ia Supernovae and from cosmic microwave background (CMB) anisotropies have revealed that most of the matter of the Universe interacts in a repulsive manner, composing the so-called dark energy constituent of the Universe. Determining the properties of dark energy is one of the most important tasks of modern cosmology and this is the main motivation for this work. The analysis of cosmic gravitational waves (GW) represents, besides the CMB temperature and polarization anisotropies, an additional approach in the determination of parameters that may constrain the dark energy models and their consistence. In recent work, a generalized Chaplygin gas model was considered in a flat universe and the corresponding spectrum of gravitational waves was obtained. In the present work we have added a massless gas component to that model and the new spectrum has been compared to the previous one. The Chaplygin gas is also used to simulate a L-CDM model by means of a particular combination of parameters so that the Chaplygin gas and the L-CDM models can be easily distinguished in the theoretical scenarios here established. We find that the models are strongly degenerated in the range of frequencies studied. This degeneracy is in part expected since the models must converge to each other when some particular combinations of parameters are considered.
Resumo:
This study aims to understand how Chinese enterprises acted in Brazilian energy and telecommunication sectors in the past ten years and whether they would be leading to an increase in the asymmetries between Brazil and China. It argues that the asymmetries presented in the relations are due in large part to successful Chinese enterprises' strategies.
Chinese energy policy progress and challenges in the transition to low carbon development, 2006-2013
Resumo:
If the world is not to jeopardize the chances for human life on Earth, climate change must be mitigated; therefore, achieving low carbon development is crucial. China is the world's greatest GHG emitter, energy producer and energy consumer; investigating its energy-climate policy developments and international positions are of utmost importance to understand and tackle current stumbling blocks of the global energy and climate governance.
Resumo:
The energy harvesting efficiency of electrospun poly(vinylidene fluoride), its copolymer vinylidene fluoride-trifluoroethylene and composites of the later with piezoelectric BaTiOon interdigitated electrodes has been investigated. Further, a study of the influence of the electrospinning processing parameters on the size and distribution of the composites fibers has been performed. It is found that the best energy harvesting performance is obtained for the pure poly(vinylidene fluoride) fibers, with power outputs up to 0.03 W and 25 W under low and high mechanical deformation. The copolymer and the composites show reduced power output due to increased mechanical stiffness. The obtained values, among the largest found in the literature, the easy processing and the low cost and robustness of the polymer, demonstrate the applicability of the developed system.
Resumo:
This study aimed to evaluate the postharvest behavior of peach cv. Aurora 1 harvested in the Zona da Mata region of Minas Gerais in two ripening stages and kept under different storage temperatures. Fruits on mid-ripe and fully ripe stages were stored at three temperatures: 5.6 ± 1.57 °C and 72.8 ± 3.8% RH; 10.4 ± 0.5 °C and 95.8 ± 5.5% RH; 21.04 ± 1.63 °C and 96.9 ± 2.6% RH up to 28 storage days (SD) . During storage, fruits stored at 21.04 ± 1.63 °C were evaluated every two days until 8 SD, and every four days for fruits stored at other temperatures. The harvest day was assigned as day zero. The variables evaluated were CO2 production, color of the pericarp and pulp, fresh mass loss, flesh firmness, total soluble solids, titratable acidity, contents of ascorbic acid and carotenoids. The fresh mass loss increased during storage, peaking at 5.6 °C. The reduction in ascorbic acid content was higher in fully ripe fruits at all temperatures. Mid-ripe fruits reached the end of the storage period with better quality. The temperature of 10.4 °C was the most efficient in keeping postharvest quality of peach cv. Aurora 1 harvested in the Zona da Mata region.