982 resultados para Electrophoretic mobility shift assays
Resumo:
In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.
Resumo:
In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.
Resumo:
Wireless sensor networks monitor their surrounding environment for the occurrence of some anticipated phenomenon. Most of the research related to sensor networks considers the static deployment of sensor nodes. Mobility of sensor node can be considered as an extra dimension of complexity, which poses interesting and challenging problems. Node mobility is a very important aspect in the design of effective routing algorithm for mobile wireless networks. In this work we intent to present the impact of different mobility models on the performance of the wireless sensor networks. Routing characteristics of various routing protocols for ad-hoc network were studied considering different mobility models. Performance metrics such as end-to-end delay, throughput and routing load were considered and their variations in the case of mobility models like Freeway, RPGM were studied. This work will be useful to figure out the characteristics of routing protocols depending on the mobility patterns of sensors
Resumo:
Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ~2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0⋅24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging
Resumo:
The approximations normally used in the calculation of the isomer shift are compared with the exact expressions using Dirac-Slater orbitals and a three-parameter Fermi-type nuclear charge distribution. The nonuniformity of the electronic density over the nuclear volume affects the results. Different choices of the nuclear surface thickness t and the radius c in the protonic
density P_N (\gamma) also affects the isomer shift differently even though the values are chosen to yield a given value of \delta
Resumo:
Using Doppler-free two-photon absorption spectroscopy, we have measured hyperfine splitting constants as well as isotopic level shifts of the 6s^2 np ^2 P_l/2,3/2 states in (n=7-10) in ^203 TI and ^205 TI. Calculations for hyperfine constants and electron density at the nucleus have been performed by the Dirac-Fock method. The experimental results are compared with these calculations as well as with the predictions of the semiempirical theory.
Resumo:
Relativistic multi-configuration Dirac-Fock wavefunctions, coupled to good angular momentum J, have been calculated for low lying states of Ba I and Ba II. The resulting electronic factors show good agreement with data derived from recent high-resolution laser spectroscopy experiments and results from a comparison of muonic and optical data.
Resumo:
In the vision of Mark Weiser on ubiquitous computing, computers are disappearing from the focus of the users and are seamlessly interacting with other computers and users in order to provide information and services. This shift of computers away from direct computer interaction requires another way of applications to interact without bothering the user. Context is the information which can be used to characterize the situation of persons, locations, or other objects relevant for the applications. Context-aware applications are capable of monitoring and exploiting knowledge about external operating conditions. These applications can adapt their behaviour based on the retrieved information and thus to replace (at least a certain amount) the missing user interactions. Context awareness can be assumed to be an important ingredient for applications in ubiquitous computing environments. However, context management in ubiquitous computing environments must reflect the specific characteristics of these environments, for example distribution, mobility, resource-constrained devices, and heterogeneity of context sources. Modern mobile devices are equipped with fast processors, sufficient memory, and with several sensors, like Global Positioning System (GPS) sensor, light sensor, or accelerometer. Since many applications in ubiquitous computing environments can exploit context information for enhancing their service to the user, these devices are highly useful for context-aware applications in ubiquitous computing environments. Additionally, context reasoners and external context providers can be incorporated. It is possible that several context sensors, reasoners and context providers offer the same type of information. However, the information providers can differ in quality levels (e.g. accuracy), representations (e.g. position represented in coordinates and as an address) of the offered information, and costs (like battery consumption) for providing the information. In order to simplify the development of context-aware applications, the developers should be able to transparently access context information without bothering with underlying context accessing techniques and distribution aspects. They should rather be able to express which kind of information they require, which quality criteria this information should fulfil, and how much the provision of this information should cost (not only monetary cost but also energy or performance usage). For this purpose, application developers as well as developers of context providers need a common language and vocabulary to specify which information they require respectively they provide. These descriptions respectively criteria have to be matched. For a matching of these descriptions, it is likely that a transformation of the provided information is needed to fulfil the criteria of the context-aware application. As it is possible that more than one provider fulfils the criteria, a selection process is required. In this process the system has to trade off the provided quality of context and required costs of the context provider against the quality of context requested by the context consumer. This selection allows to turn on context sources only if required. Explicitly selecting context services and thereby dynamically activating and deactivating the local context provider has the advantage that also the resource consumption is reduced as especially unused context sensors are deactivated. One promising solution is a middleware providing appropriate support in consideration of the principles of service-oriented computing like loose coupling, abstraction, reusability, or discoverability of context providers. This allows us to abstract context sensors, context reasoners and also external context providers as context services. In this thesis we present our solution consisting of a context model and ontology, a context offer and query language, a comprehensive matching and mediation process and a selection service. Especially the matching and mediation process and the selection service differ from the existing works. The matching and mediation process allows an autonomous establishment of mediation processes in order to transfer information from an offered representation into a requested representation. In difference to other approaches, the selection service selects not only a service for a service request, it rather selects a set of services in order to fulfil all requests which also facilitates the sharing of services. The approach is extensively reviewed regarding the different requirements and a set of demonstrators shows its usability in real-world scenarios.