869 resultados para Electronics engineers
Resumo:
This paper presents methods based on Information Filters for solving matching problems with emphasis on real-time, or effectively real-time applications. Both applications discussed in this work deal with ultrasound-based rigid registration in computer-assisted orthopedic surgery. In the first application, the usual workflow of rigid registration is reformulated such that registration algorithms would iterate while the surgeon is acquiring ultrasound images of the anatomy to be operated. Using this effectively real-time approach to registration, the surgeon would then receive feedback in order to better gauge the quality of the final registration outcome. The second application considered in this paper circumvents the need to attach physical markers to bones for anatomical referencing. Experiments using anatomical objects immersed in water are performed in order to evaluate and compare the different methods presented herein, using both 2D as well as real-time 3D ultrasound.
Resumo:
A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
An algorithm for the real-time registration of a retinal video sequence captured with a scanning digital ophthalmoscope (SDO) to a retinal composite image is presented. This method is designed for a computer-assisted retinal laser photocoagulation system to compensate for retinal motion and hence enhance the accuracy, speed, and patient safety of retinal laser treatments. The procedure combines intensity and feature-based registration techniques. For the registration of an individual frame, the translational frame-to-frame motion between preceding and current frame is detected by normalized cross correlation. Next, vessel points on the current video frame are identified and an initial transformation estimate is constructed from the calculated translation vector and the quadratic registration matrix of the previous frame. The vessel points are then iteratively matched to the segmented vessel centerline of the composite image to refine the initial transformation and register the video frame to the composite image. Criteria for image quality and algorithm convergence are introduced, which assess the exclusion of single frames from the registration process and enable a loss of tracking signal if necessary. The algorithm was successfully applied to ten different video sequences recorded from patients. It revealed an average accuracy of 2.47 ± 2.0 pixels (∼23.2 ± 18.8 μm) for 2764 evaluated video frames and demonstrated that it meets the clinical requirements.
Resumo:
Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.
Resumo:
A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008.
Resumo:
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
Resumo:
SMARTDIAB is a platform designed to support the monitoring, management, and treatment of patients with type 1 diabetes mellitus (T1DM), by combining state-of-the-art approaches in the fields of database (DB) technologies, communications, simulation algorithms, and data mining. SMARTDIAB consists mainly of two units: 1) the patient unit (PU); and 2) the patient management unit (PMU), which communicate with each other for data exchange. The PMU can be accessed by the PU through the internet using devices, such as PCs/laptops with direct internet access or mobile phones via a Wi-Fi/General Packet Radio Service access network. The PU consists of an insulin pump for subcutaneous insulin infusion to the patient and a continuous glucose measurement system. The aforementioned devices running a user-friendly application gather patient's related information and transmit it to the PMU. The PMU consists of a diabetes data management system (DDMS), a decision support system (DSS) that provides risk assessment for long-term diabetes complications, and an insulin infusion advisory system (IIAS), which reside on a Web server. The DDMS can be accessed from both medical personnel and patients, with appropriate security access rights and front-end interfaces. The DDMS, apart from being used for data storage/retrieval, provides also advanced tools for the intelligent processing of the patient's data, supporting the physician in decision making, regarding the patient's treatment. The IIAS is used to close the loop between the insulin pump and the continuous glucose monitoring system, by providing the pump with the appropriate insulin infusion rate in order to keep the patient's glucose levels within predefined limits. The pilot version of the SMARTDIAB has already been implemented, while the platform's evaluation in clinical environment is being in progress.
Resumo:
Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.
Resumo:
This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm
Resumo:
Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system’s position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device’s projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.