877 resultados para Electrochemical Impedance Spectrometry Band-Pass Delta-Sigma Converter Chip ImpedenziometricoCT Sensors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbonate fraction of sediment core ODP 849, leg 138, located in the eastern equatorial Pacific, mostly consisting of coccoliths, was separated and analyzed for its Zn isotopic composition. The overall variation in Zn isotopic composition, as determined by multiple-collector, magnetic-sector, inductively coupled plasma mass spectrometry, was found to be on the order of 1? (expressed in delta66Zn, where deltaxZn=[(xZn/64Zn)sample/(xZn/64Zn)standard -1]*10**3 and x=66, 67 or 68) over the last 175 ka. The analytical precision was 0.04 per mil and the overall reproducibility was usually better than 0.07 per mil. The Zn isotopic composition signal exhibits several marked peaks and a high-frequency variability. A periodogram of the delta66Zn signal showed two periodicities of 35.2 and 21.2 ka. We suggest that the latter is caused by the precession of the Earth's axis of rotation. The periodogram exhibits a minimum at 41.1 ka, thus showing that the Zn isotopic composition is independent of the obliquity in the eastern equatorial Pacific. The range of delta66Zn values observed for the carbonate fraction of ODP 849 overlaps with the range observed for Fe-Mn nodules in the world's oceans, which suggests that seawater/carbonate Zn isotope fractionation is weak. We therefore assume that most of the Zn isotope variability is a result of the selective entrainment of the light isotopes by organic matter in the surface ocean. The ODP 849 delta66Zn record seems to follow the changes in the insolation cycles. Changes in the late summer/fall equatorial insolation modulate the intensity of the equatorial upwelling, hence the mixing between deep and surface waters. We propose that during decreased summer/fall equatorial insolation, when a steep thermocline can develop (El Niño-like conditions), the surface waters cannot be replenished by deep waters and become depleted in the lighter Zn isotopes by biological activity, thus resulting in the progressive increase of the delta66Zn values of the carbonate shells presumably in equilibrium with surface seawater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lacustrine sediment core from Store Koldewey, northeast Greenland, was biogeochemically, biologically and sedimentologically investigated in order to reconstruct long- and short-term climatic and environmental variability. The chronology of the uppermost 189 cm of the record is based on ten 14C AMS age determinations of aquatic mosses. The record covers almost the entire Holocene and revealed changes on multidecadal to centennial scales. Dating of the oldest mosses shows that lacustrine biogenic productivity already began at around 11 cal. kyr BP. This age pre-dates the onset of biogenic productivity in other lakes on Store Koldewey by about 2 kyr. In spite of the early onset of biogenic production organic matter accumulation remained low and minerogenic sedimentation dominated. At about 9.5 cal. kyr BP moss, sulphur, organic carbon and biogenic silica content started to increase, indicating that the environment stabilized and the biogenic production in the lake adjusted to more preferable conditions. Subsequently, the biogenic productivity experienced repeated changes and varied both on long- and short-term scales. The long-term trend shows a maximum during the early Holocene thus responding to increased temperatures during the Holocene Thermal Maximum. Superimposed on the long-term trend, biogenic productivity also experienced repeated short-term fluctuations that match partly the NGRIP temperatures. The most pronounced decrease of biogenic productivity occurred at around 8.2 cal. kyr BP. Perennial lake ice coverage resulting from low temperatures is supposed to have caused decreased lacustrine biogenic productivity. From the middle Holocene to the present repeated decreases of productivity occurred that could be related to periods with severe sea-ice conditions of the East Greenland Current. Besides the dependence on air temperature it therefore demonstrates the sensitivity of lacustrine biogenic productivity in coastal high arctic areas to short-term cold spells that are mediated by the currents emanating from the Arctic Ocean. However, the data also emphasize the difficulties associated with the interpretation of lacustrine records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate changes in the delivery and oceanic transport of Amazon sediments related to terrestrial climate variations over the last 250 ka. We present high-resolution geochemical records from four marine sediment cores located between 5 and 12° N along the northern South American margin. The Amazon River is the sole source of terrigenous material for sites at 5 and 9° N, while the core at 12° N receives a mixture of Amazon and Orinoco detrital particles. Using an endmember unmixing model, we estimated the relative proportions of Amazon Andean material ("%-Andes", at 5 and 9° N) and of Amazon material ("%-Amazon", at 12° N) within the terrigenous fraction. The %-Andes and %-Amazon records exhibit significant precessional variations over the last 250 ka that are more pronounced during interglacials in comparison to glacial periods. High %-Andes values observed during periods of high austral summer insolation reflect the increased delivery of suspended sediments by Andean tributaries and enhanced Amazonian precipitation, in agreement with western Amazonian speleothem records. Increased Amazonian rainfall reflects the intensification of the South American monsoon in response to enhanced land-ocean thermal gradient and moisture convergence. However, low %-Amazon values obtained at 12° N during the same periods seem to contradict the increased delivery of Amazon sediments. We propose that reorganizations in surface ocean currents modulate the northwestward transport of Amazon material. In agreement with published records, the seasonal North Brazil Current retroflection is intensified (or prolonged in duration) during cold substages of the last 250 ka (which correspond to intervals of high DJF or low JJA insolation) and deflects eastward the Amazon sediment and freshwater plume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The North Atlantic Ocean underwent an abrupt temperature increase of 9 °C at high latitudes within a couple of decades during the transition from Heinrich event 1 (H1) to the Bølling warm event, but the mechanism responsible for this warming remains uncertain. Here we address this issue, presenting high-resolution last deglaciation planktic and benthic foraminiferal records of temperature and oxygen isotopic composition of seawater (d18OSW) for the subtropical South Atlantic. We identify a warming of ~6.5 °C and an increase in d18Osw of 1.2 per mil at the permanent thermocline during the transition, and a simultaneous warming of ~3.5 °C with no significant change in d18Osw at intermediate depths. Most of the warming can be explained by tilting the South Atlantic east-west isopycnals from a flattened toward a steepened position associated with a collapsed (H1) and strong (Bølling) Atlantic meridional overturning circulation (AMOC). However, this zonal seesaw explains an increase of just 0.3 per mil in permanent thermocline d18Osw. Considering that d18Osw at the South Atlantic permanent thermocline is strongly influenced by the inflow of salty Indian Ocean upper waters, we suggest that a strengthening in the Agulhas leakage took place at the transition from H1 to the Bølling, and was responsible for the change in d18Osw recorded in our site. Our records high-light the important role played by Indian-Atlantic interocean exchange as the trigger for the resumption of the AMOC and the Bølling warm event. of the AMOC and the Bølling warm event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the latest Paleocene an abrupt shift to more negative d13C values has been documented at numerous marine and terrestrial sites (Bralower et al., 1997, doi:10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2; Cramer et al., 1999; Kaiho et al., 1996, doi:10.1029/96PA01021; Kennett and Stott, 1991, doi:10.1038/353225a0; Koch et al., 1992, doi:10.1038/358319a0; Stott et al., 1996; Thomas and Shackleton, 1996, doi:10.1144/GSL.SP.1996.101.01.20; Zachos et al., 1993). This carbon isotope event (CIE) is coincident with oxygen isotope data that indicate warming of surface waters at high latitudes of nearly 4°-6°C (Kennett and Stott, 1991, doi:10.1038/353225a0) and more moderate warming in the subtropics (Thomas et al., 1999, doi:10.1029/1999PA900031). Here we report 187Os/188Os isotope records from the North Atlantic and Indian Oceans which demonstrate a >10% increase in the 187Os/188Os ratio of seawater coincident with the late Paleocene CIE. This excursion to higher 187Os/188Os ratios is consistent with a global increase in weathering rates. The inference of increased chemical weathering during this interval of unusual warmth is significant because it provides empirical evidence supporting the operation of a feedback between chemical weathering rates and warm global climate, which acts to stabilize Earth's climate (Walker et al., 1981). Estimates of the duration of late Paleocene CIE (Bains et al., 1999, doi:10.1126/science.285.5428.724; Bralower et al., 1997, doi:10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2; Norris and Röhl, 1999, doi:10.1038/44545; Röhl et al., 2000, doi:10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2) in conjunction with the Os isotope data imply that intensified chemical weathering in response to warm, humid climates can occur on timescales of 104-105 years. This interpretation requires that the late Paleocene thermal maximum Os isotope excursion be produced mainly by increased Os flux to the ocean rather than a transient excursion to higher 187Os/188Os ratios in river runoff. Although we argue that the former is more likely than the latter, we cannot rule out significant changes in the 187Os/188Os ratio of rivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report new data on oxygen isotopes in marine sulfate (delta18O[SO4]), measured in marine barite (BaSO4), over the Cenozoic. The delta18O[SO4] varies by 6x over the Cenozoic, with major peaks 3, 15, 30 and 55 Ma. The delta18O[SO4] does not co-vary with the delta18O[SO4], emphasizing that different processes control the oxygen and sulfur isotopic composition of sulfate. This indicates that temporal changes in the delta18O[SO4] over the Cenozoic must reflect changes in the isotopic fractionation associated with the sulfide reoxidation pathway. This suggests that variations in the aerial extent of different types of organic-rich sediments may have a significant impact on the biogeochemical sulfur cycle and emphasizes that the sulfur cycle is less sensitive to net organic carbon burial than to changes in the conditions of that organic carbon burial. The delta18O[SO4] also does not co-vary with the d18O measured in benthic foraminifera, emphasizing that oxygen isotopes in water and sulfate remain out of equilibrium over the lifetime of sulfate in the ocean. A simple box model was used to explore dynamics of the marine sulfur cycle with respect to both oxygen and sulfur isotopes over the Cenozoic. We interpret variability in the delta18O[SO4] to reflect changes in the aerial distribution of conditions within organic-rich sediments, from periods with more localized, organic-rich sediments, to periods with more diffuse organic carbon burial. While these changes may not impact the net organic carbon burial, they will greatly affect the way that sulfur is processed within organic-rich sediments, impacting the sulfide reoxidation pathway and thus the delta18O[SO4]. Our qualitative interpretation of the record suggests that sulfate concentrations were probably lower earlier in the Cenozoic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A suite of conjugate pore fluid and sediment samples were collected during Leg 169 of the ODP from within the clastic sedimentary sequences which host massive sulphides at Central Hill, Escanaba Trough (ODP Site 1038). We report the alkali element and boron, and Li and B isotope data for these samples. Relative to a reference site (Site 1037) located outside the zone of high heat flow, pore fluids from Site 1038 show a wide variation in Cl (300-800 mM), and have far higher concentrations of Li (up to 6.2 mM), B (up to 9.7 mM), Cs (up to 5.0 mM), and Rb (up to 97 mM). We show that the pore fluids are derived from hydrothermal circulation that has extended into the basement oceanic crust, with input of the alkali elements and B as the rising hydrothermal fluids interact geochemically with the overlying clastic sediments. There is, however, no marked depletion of these elements in the conjugate sediments, suggesting that there has been advective transport of fluids away from the primary hydrothermal reaction site. This is supported by modelling of the Li and B isotope systematics of the pore fluids, which shows that they record extensive formation of secondary minerals during cooling of the fluids from ~350 to ~20ºC. Precipitation of metal-rich sulphides would have occurred prior to the formation of these minerals, thus, the pore fluid Li and B isotope data can place important constraints on the locus of sulphide deposition beneath the seafloor at Escanaba.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large Arctic rivers discharge significant amounts of dissolved organic matter (DOM) into the Arctic Ocean. We sampled natural waters of the Lena River, the Buor-Khaya Bay (Laptev Sea), permafrost melt water creeks, ice complex melt water creeks and a lake. The goal of this study was to characterize the molecular DOM composition with respect to different water bodies within the Lena Delta. We aimed at an identification of source-specific DOM molecular markers and their relative contribution to DOM of different origin. The molecular characterization was performed for solid-phase extracted DOM by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Average dissolved organic carbon concentrations in the original samples were 490±75 µmol C/L for riverine and bay samples and 399±115 µmol C/L for permafrost melt water creeks. Average TDN concentrations were elevated in the permafrost melt waters (19.7±7.1 µmol N/L) in comparison to the river and the bay (both 13.2±2.6 µmol N/L). FT-ICR MS and statistical tools demonstrated that the origin of DOM in the Lena Delta was systematically reflected in its molecular composition. Magnitude weighted parameters calculated from MS data (O/Cwa, H/Cwa, C/Nwa) highlighted preliminary sample discrimination. The highest H/Cwa of 1.315 was found for DOM in melt water creeks in comparison to 1.281 for river and 1.230 for the bay samples. In the bay samples we observed a higher fraction of oxygen-rich components which was reflected in an O/Cwa ratio of 0.445 in comparison to 0.425 and 0.427 in the river and creeks, respectively. From the southernmost location to the bay a relative depletion of nitrogenous molecular markers and an enrichment of oxidized DOM components occurred. The highest contribution of nitrogenous components was indicative for creeks reflected in a C/Nwa of 104 in comparison to 143 and 176 in the river and bay, respectively. These observations were studied on a molecular formula level using principal component and indicator value analyses. The results showed systematic differences with respect to water origin and constitute an important basis for a better mechanistic understanding of DOM transformations in the changing Arctic rivers.