985 resultados para Elastic materials
Resumo:
Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se55Te25Ge20, Se55Te25Ge20 + 0.025% multi walled carbon nano tubes and Se55Te25Ge20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se55Te25Ge20) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.
Resumo:
Here, we demonstrate a Si-mediated environmentally friendly reduction of graphene oxide (GO) and the fabrication of its hybrids with multiwall carbon nanotubes and nanofibers. The reduction of GO is facilitated by nascent hydrogen generated by the reaction between Si and KOH at similar to 60 degrees C. The overall process takes 5 to 7 minutes and 10 to 15 mu m of Si is consumed each time. We show that Si can be used multiple times and the rGO based hybrids can be used for electrode materials.
Resumo:
In this study, two different types of multiwall carbon nanotubes (MWNTs) namely pristine (p-MWNTs) and amine functionalized (a-MWNTs) were melt-mixed with polycaprolactone (PCL) to develop biodegradable electromagnetic interference (EMI) shielding materials. The bulk electrical conductivity of the nanocomposites was assessed using broadband dielectric spectroscopy and the structural properties were evaluated using dynamic mechanical thermal analysis (DMTA). Both the electrical conductivity and the structural properties improved after the addition of MWNTs and were observed to be proportional to the increasing fractions in the nanocomposites. The shielding effectiveness of the nanocomposites was studied using a vector network analyzer (VNA) in a broad range of frequencies, X-band (8 to 12 GHz) and K-u-band (12 to 18 GHz) on toroidal samples. The shielding effectiveness significantly improved on addition of MWNTs, more in the case of p-MWNTs than in a-MWNTs. For instance, at a given fraction of MWNTs (3 wt%), PCL with p-MWNTs and a-MWNTs showed a shielding effectiveness of -32 dB and -29 dB, respectively. Moreover, it was observed that reflection was the primary mechanism of shielding at lower fractions of MWNTs, while absorption dominated at higher fractions in the composites. As one of the rationales of this work was to develop biodegradable EMI shielding materials to address the challenges concerning electronic waste, the effect of different MWNTs on the biodegradability of PCL composites was assessed through enzymatic degradation. The enzymatic degradation of the samples cut from the hot pressed films by bacterial lipase was investigated. It was noted that a-MWNTs exhibited almost similar degradation rate as the control PCL sample; however, p-MWNTs showed a slower degradation rate. This study demonstrates the potential use of PCL-MWNT composites as flexible, light weight and eco-friendly EMI shielding materials.
Resumo:
Phase-change cooling technique is a suitable method for thermal management of electronic equipment subjected to transient or cyclic heat loads. The thermal performance of a phase-change based heat sink under cyclic heat load depends on several design parameters, namely, applied heat flux, cooling heat transfer coefficient, thermophysical properties of phase-change materials (PCMs), and physical dimensions of phase-change storage system during melting and freezing processes. A one-dimensional conduction heat transfer model is formulated to evaluate the effectiveness of preliminary design of practical PCM-based energy storage units. In this model, the phase-change process of the PCM is divided into melting and solidification subprocesses, for which separate equations are written. The equations are solved sequentially and an explicit closed-form solution is obtained. The efficacy of analytical model is estimated by comparing with a finite-volume-based numerical solution for both transient and cyclic heat loads.
Resumo:
Highly conducting composites were derived by selectively localizing multiwall carbon nanotubes (MWNTs) in co-continuous PVDF/ABS (50/50, wt/wt) blends. The electrical percolation threshold was obtained between 0.5 and 1 wt% MWNTs as manifested by a dramatic increase in the electrical conductivity by about six orders of magnitude with respect to the neat blends. In order to further enhance the electrical conductivity of the blends, the MWNTs were modified with amine terminated ionic liquid (IL), which, besides enhancing the interfacial interaction with PVDF, facilitated the formation of a network like structure of MWNTs. This high electrical conductivity of the blends, at a relatively low fraction (1 wt%), was further explored to design materials that can attenuate electromagnetic (EM) radiation. More specifically, to attenuate the EM radiation by absorption, a ferroelectric phase was introduced. To accomplish this, barium titanate (BT) nanoparticles chemically stitched onto graphene oxide (GO) sheets were synthesized and mixed along with MWNTs in the blends. Intriguingly, the total EM shielding effectiveness (SE) was enhanced by ca. 10 dB with respect to the blends with only MWNTs. In addition, the effect of introducing a ferromagnetic phase (Fe3O4) along with IL modified MWNTs was also investigated. This study opens new avenues in designing materials that can attenuate EM radiation by selecting either a ferroelectric (BT-GO) or a ferromagnetic phase (Fe3O4) along with intrinsically conducting nanoparticles (MWNTs).
Resumo:
Various NixCo1-x alloys (with x varying from 0-60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni-Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni-Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni-Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni-Co alloy.
Resumo:
Quantitative evaluation of the mechanical behavior of molecular materials by a nanoindentation technique has gained prominence recently. However, all the reported data have been on room-temperature properties despite many interesting phenomena observed in them with variations in temperature. In this paper, we report the results of nanoindentation experiments conducted as a function of temperature, T, between 283 and 343 K, on the major faces of three organic crystals: saccharin, sulfathiazole (form 2), and L-alanine, which are distinct in terms of the number and strength of intermolecular interactions in them. Results show that elastic modulus, E, and hardness, H, decrease markedly with increasing T. While E decreases linearly with T, the variations in H with T are not so, and were observed to drop by similar to 50% over the range of T investigated. The slope of the linear fits to E vs T for the organic crystals was found to be around 1, which is considerably higher than the values of 0.3-0.5 reported in the literature for metallic, ionic, and covalently bonded crystalline materials. Possible implications of the observed remarkable changes in H for pharmaceutical manufacturing are highlighted.
Resumo:
Rechargeable batteries based on Li and Na ions have been growing leaps and bounds since their inception in the 1970s. They enjoy significant attention from both the fundamental science point of view and practical applications ranging from portable electronics to hybrid vehicles and grid storage. The steady demand for building better batteries calls for discovery, optimisation and implementation of novel positive insertion (cathode) materials. In this quest, chemists have tried to unravel many future cathode materials by taking into consideration their eco-friendly synthesis, material/process economy, high energy density, safety, easy handling and sustainability. Interestingly, sulfate-based cathodes offer a good combination of sustainable syntheses and high energy density owing to their high-voltage operation, stemming from electronegative SO42- units. This review delivers a sneak peak at the recent advances in the discovery and development of sulfate-containing cathode materials by focusing on their synthesis, crystal structure and electrochemical performance. Several family of cathodes are independently discussed. They are 1) fluorosulfates AMSO(4)F], 2) bihydrated fluorosulfates AMSO(4)F2H(2)O], 3) hydroxysulfate AMSO(4)OH], 4) bisulfates A(2)M(SO4)(2)], 5) hydrated bisulfates A(2)M(SO4)(2)nH(2)O], 6) oxysulfates Fe-2(SO4)(2)O] and 7) polysulfates A(2)M(2)(SO4)(3)]. A comparative study of these sulfate-based cathodes has been provided to offer an outlook on the future development of high-voltage polyanionic cathode materials for next-generation batteries.
Resumo:
Balanced white light emitting systems are important for applications in electronic devices. Of all types of white light emitting materials, gels have the special advantage of easy processability. Here we report two white light emitting gels, which are based on lanthanide cholate self-assembly. The components are commercially available and the gels are prepared by simply sonicating their aqueous solutions (1-3min), unlike any other known white light emitting systems. Their CIE co-ordinates, calculated from the luminescence data, fall in the white light range with a correlated color temperature of ca. 5600 K.
Resumo:
Rechargeable lithium-ion battery remains the leading electrochemical energy-storage device, albeit demanding steady effort of design and development of superior cathode materials. Polyanionic framework compounds are widely explored in search for such cathode contenders. Here, lithium metal borate (LiMBO3) forms a unique class of insertion materials having the lowest weight polyanion (i. e., BO33-), thus offering the highest possible theoretical capacity (ca. 220 mAh/g). Since the first report in 2001, LiMBO3 has rather slow progress in comparison to other polyanionic cathode systems based on PO4, SO4, and SiO4. The current review gives a sneak peak to the progress on LiMBO3 cathode systems in the last 15 years highlighting their salient features and impediments in cathode implementation. The synthesis and structural aspects of borate family are described along with the critical analysis of the electrochemical performance of borate family of insertion materials.
Resumo:
Luminescent organic materials have attracted significant attention in recent times owing to their opportunities in various functional applications. Interestingly, unlike fluorescence, opportunities hidden within the phosphorescence properties of organic compounds have received considerably less attention even until last few years. It is only in the second decade of the 21st century, within a time span of less than last 5 years, that the concepts and prospects of organic compounds as phosphorescent materials have evolved rapidly. The previously perceived limitations of organic compounds as phosphorescent materials have been overcome and several molecules have been designed using old and new concepts, such as heavy atom effects, matrix assisted isolation, hydrogen bonding and halogen bonding, thereby gaining access to a significant number of materials with efficient phosphorescent features. In addition, significant improvements have been made in the development of RTP (room temperature phosphorescent) materials, which can be used under ambient conditions. In this review, we bring together the vastly different approaches developed by various researchers to understand and appreciate this recent revolution in organic luminescent materials.
Resumo:
The nanoindentation response of the (001) face of sodium saccharin dihydrate is examined. The structure can be demarcated into regular and irregular regions or domains. The regular domains have solid-like and the irregular ones have liquid-like characteristics. Therefore, these domains impart a microstructure to the crystal. The indent face (001) is prominently developed in this crystal and unambiguously presents the regular and irregular regions to nanoindention. Average values of elastic modulus and hardness show a distinct bimodal mechanical response. Such a response has been observed in the case of intergrown polymorphs of aspirin and felodipine. We examine two possible reasons as to why the responses could be for bimodal in this crystal. The first possibility could be that the two domains correspond to regions of the original dihydrate and a lower hydrate that is obtained by the loss of some water. The second possibility could be that these responses correspond to regular and irregular regions in the structure. Nanoindentation is a very useful technique in the characterization of molecular solids, as a complementary technique to X-ray crystallography, because it samples different length scales.
Resumo:
The clever designs of natural transducers are a great source of inspiration for man-made systems. At small length scales, there are many transducers in nature that we are now beginning to understand and learn from. Here, we present an example of such a transducer that is used by field crickets to produce their characteristic song. This transducer uses two distinct components-a file of discrete teeth and a plectrum that engages intermittently to produce a series of impulses forming the loading, and an approximately triangular membrane, called the harp, that acts as a resonator and vibrates in response to the impulse-train loading. The file-and-plectrum act as a frequency multiplier taking the low wing beat frequency as the input and converting it into an impulse-train of sufficiently high frequency close to the resonant frequency of the harp. The forced vibration response results in beats producing the characteristic sound of the cricket song. With careful measurements of the harp geometry and experimental measurements of its mechanical properties (Young's modulus determined from nanoindentation tests), we construct a finite element (FE) model of the harp and carry out modal analysis to determine its natural frequency. We fine tune the model with appropriate elastic boundary conditions to match the natural frequency of the harp of a particular species-Gryllus bimaculatus. We model impulsive loading based on a loading scheme reported in literature and predict the transient response of the harp. We show that the harp indeed produces beats and its frequency content matches closely that of the recorded song. Subsequently, we use our FE model to show that the natural design is quite robust to perturbations in the file. The characteristic song frequency produced is unaffected by variations in the spacing of file-teeth and even by larger gaps. Based on the understanding of how this natural transducer works, one can design and fabricate efficient microscale acoustic devices such as microelectromechanical systems (MEMS) loudspeakers.
Resumo:
Fungus-growing termites are involved in many ecological processes and play a central role in influencing soil dynamics in the tropics. The physical and chemical properties of their nest structures have been largely described; however less information is available concerning the relatively temporary structures made above-ground to access food items and protect the foraging space (the soil `sheetings'). This study investigated whether the soil physical and chemical properties of these constructions are constant or if they vary depending on the type of food they cover. Soil samples and soil sheetings were collected in a forest in India, from leaves on the ground (LEAF), fallen branches (WOOD), and vertical soil sheetings covering the bark of trees (TREE). In this environment, termite diversity was dominated by Odontotermes species, and especially Odontotermes feae and Odontotermes obesus. However, there was no clear niche differentiation and, for example, O. feae termites were found on all the materials. Compared with the putative parent soil (control), TREE sheetings showed the greatest (and most significant) differences (higher clay content and smaller clay particle sizes, lower C and N content and smaller delta C-13 and delta N-15), while LEAF sheetings were the least modified, though still significantly different than the control soil. We suggest that the termite diversity is a less important driver of potential soil modification than sheeting diversity. Further, there is evidence that construction properties are adapted to their prospective life-span, with relatively long-lasting structures being most different from the parent soil. (C) 2015 Elsevier Masson SAS. All rights reserved.