869 resultados para Ecological guilds
Resumo:
Antibiotics are becoming increasingly prevalent in bacterial communities due to clinical and agricultural misuse and overuse in their environment. As exposure increases, so does the incidence of microbial resistance. Such is the case with bacterial resistance to tetracyclines, a phenotype often acquired through the horizontal gene transfer of tet genes between bacteria. The objective of this project was to analyze the bacterial diversity of tet resistance genes in soil from Miami-Dade County. Bacterial isolates were Gram-stained and the Kirby-Bauer antibiotic disk diffusion test was performed to determine each bacterium’s degree of resistance. The 16S rRNA gene from antibiotic-resistant isolates was amplified by PCR and sequenced to identify the isolates. All isolates’ tet genes were amplified by multiplex PCR, sequenced, and compared. Among eight isolates, three distinct species were positively identified based on their 16S rRNA sequences and four distinct tet genes were identified, though all tested susceptible to tetracycline via the Kirby-Bauer test. This project clarifies some aspects of the ecology of antibiotic resistance genes, their natural ecological function and the potential for the expansion of intrinsic multi-antibiotic resistance into new ecosystems and/or hosts.
Resumo:
A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multi-disciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis–St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales.
Resumo:
There is growing urgency to enhance the sustainability of existing and emerging cities. The science of ecology, especially as it interacts with disciplines in the social sciences and urban design, has contributions to make to the sustainable transformation of urban systems. Not all possible urban transformations may lead toward sustainability. Ecological science helps identify components of resilience that can favor transformations that are more sustainable. To summarize the dynamics and choices involved in sustainable transformations, a “metacity” framework is presented, embracing ecological processes in cities as complementary to those involving society, power, and economy.
Resumo:
During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.
Resumo:
By integrating the research and resources of hundreds of scientists from dozens of institutions, network-level science is fast becoming one scientific model of choice to address complex problems. In the pursuit to confront pressing environmental issues such as climate change, many scientists, practitioners, policy makers, and institutions are promoting network-level research that integrates the social and ecological sciences. To understand how this scientific trend is unfolding among rising scientists, we examined how graduate students experienced one such emergent social-ecological research initiative, Integrated Science for Society and Environment, within the large-scale, geographically distributed Long Term Ecological Research (LTER) Network. Through workshops, surveys, and interviews, we found that graduate students faced challenges in how they conceptualized and practiced social-ecological research within the LTER Network. We have presented these conceptual challenges at three scales: the individual/project, the LTER site, and the LTER Network. The level of student engagement with and knowledge of the LTER Network was varied, and students faced different institutional, cultural, and logistic barriers to practicing social-ecological research. These types of challenges are unlikely to be unique to LTER graduate students; thus, our findings are relevant to other scientific networks implementing new social-ecological research initiatives.
Resumo:
Awareness of extreme high tide flooding in coastal communities has been increasing in recent years, reflecting growing concern over accelerated sea level rise. As a low-lying, urban coastal community with high value real estate, Miami often tops the rankings of cities worldwide in terms of vulnerability to sea level rise. Understanding perceptions of these changes and how communities are dealing with the impacts reveals much about vulnerability to climate change and the challenges of adaptation. ^ This empirical study uses an innovative mixed-methods approach that combines ethnographic observations of high tide flooding, qualitative interviews and analysis of tidal data to reveal coping strategies used by residents and businesses as well as perceptions of sea level rise and climate change, and to assess the relationship between measurable sea levels and perceptions of flooding. I conduct a case study of Miami Beach's storm water master planning process which included sea level rise projections, one of the first in the nation to do so, that reveals the different and sometimes competing logics of planners, public officials, activists, residents and business interests with regards to climate change adaptation. By taking a deeply contextual account of hazards and adaptation efforts in a local area I demonstrate how this approach can be effective at shedding light on some of the challenges posed by anthropogenic climate change and accelerated rates of sea level rise. ^ The findings highlight challenges for infrastructure planning in low-lying, urban coastal areas, and for individual risk assessment in the context of rapidly evolving discourse about the threat of sea level rise. Recognition of the trade-offs and limits of incremental adaptation strategies point to transformative approaches, at the same time highlighting equity concerns in adaptation governance and planning. This new impact assessment method contributes to the integration of social and physical science approaches to climate change, resulting in improved understanding of socio-ecological vulnerability to environmental change.^
Resumo:
Globally, small-scale fisheries (SSFs) are driven by climate, governance, and market factors of social-ecological change, presenting both challenges and opportunities. The ability of small-scale fishermen and buyers to adapt to changing conditions allows participants to survive economic or environmental disturbances and to benefit from optimal conditions. This study presented here identifies key large-scale factors that drive SSFs in California to shift focus among targets and that dictate long-term trends in landings. We use Elinor Ostrom’s Social-Ecological System (SES) framework to apply an interdisciplinary approach when identifying potential factors and when understanding the complex dynamics of these fisheries. We analyzed the interactions among Monterey Bay SSFs over the past four decades since the passage of the Magnuson Stevens Fisheries Conservation and Management Act of 1976. In this region, the Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identified four modes from 1974 to 2012 that were dominated by squid, sardine, anchovy, or lacked any dominance, enabling us to identify external drivers attributed to a change in fishery dominance during seven distinct transition points. Overall, we show that market and climate factors drive the transitions among dominance modes. Governance phases most dictated long-term trends in landings and are best viewed as a response to changes in perceived biomass and thus a proxy for biomass. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience.
Resumo:
Cetaceans are aquatic mammals that rely primarily on sound for most daily tasks. A compendium of sounds is emitted for orientation, prey detection, and predator avoidance, and to communicate. Communicative sounds are among the most studied Cetacean signals, particularly those referred to as tonal sounds. Because tonal sounds have been studied especially well in social dolphins, it has been assumed these sounds evolved as a social adaptation. However, whistles have been reported in ‘solitary’ species and have been secondarily lost three times in social lineages. Clearly, therefore, it is necessary to examine closely the association, if any, between whistles and sociality instead of merely assuming it. Several hypotheses have been proposed to explain the evolutionary history of Cetacean tonal sounds. The main goal of this dissertation is to cast light on the evolutionary history of tonal sounds by testing these hypotheses by combining comparative phylogenetic and field methods. This dissertation provides the first species-level phylogeny of Cetacea and phylogenetic tests of evolutionary hypotheses of cetacean communicative signals. Tonal sounds evolution is complex in that has likely been shaped by a combination of factors that may influence different aspects of their acoustical structure. At the inter-specific level, these results suggest that only tonal sound minimum frequency is constrained by body size. Group size also influences tonal sound minimum frequency. Species that live in large groups tend to produce higher frequency tonal sounds. The evolutionary history of tonal sounds and sociality may be intertwined, but in a complex manner rejecting simplistic views such as the hypothesis that tonal sounds evolved ‘for’ social communication in dolphins. Levels of social and tonal sound complexity nevertheless correlate indicating the importance of tonal sounds in social communication. At the intraspecific level, tonal sound variation in frequency and temporal parameters may be product of genetic isolation and local levels of underwater noise. This dissertation provides one of the first insights into the evolution of Cetacean tonal sounds in a phylogenetic context, and points out key species where future studies would be valuable to enrich our understanding of other factors also playing a role in tonal sound evolution.
Resumo:
This study looks at the process of reaccumulation of resources in Miami following Hurricane Andrew. Emphasis is on differences between four major ethnic groups: Anglos, African- Americans, Cubans and non-Cuban Hispanics. Secondary data is used to analyze measures of housing recovery on a census block group level. Results indicate that, while there are ethnic consequences on a block groups level, support for enclave hypotheses are equivocal.
Resumo:
The purpose of this research was to determine what challenges small-scale organic farmers face in choosing their particular production, marketing, and organizational strategies in Miami-Dade County. Rapid soil assessments were used on six organic farms to determine the effects of soil nutrient management in terms of pH, soil organic matter (SOM), and phosphorus (P). Potential costs of inputs were documented for each farm to determine the largest challenges facing the profitability of organic farms. A production, marketing, and organizational analysis determined how farmers shape their inter-farm competitive and cooperative relations. Preliminary findings from soil, input, labor, marketing, and organizational factors indicate that soil health varies dramatically from farm to farm, inputs and labor constitute significant costs, and marketing, production, and organizational strategies show no signs of immediate growth.
Resumo:
Acknowledgments The authors sincerely thank M.N. Cueto, J.M. Antonio and M.E. Garci of the ECOBIOMAR group at IIM-CSIC for molecular analysis, technical support and quality images of some parasites. M. Bao is supported by a PhD grant from the University of Aberdeen and also by financial support of the contract from the EU Project PARASITE (grant number 312068). A. Roura is supported by BFundación Barrié de la Maza^ postdoctoral fellowship and a Securing Food, Water and the Environment Research Focus Area grant (La Trobe University). This study was partially supported by a PhD grant from the Portuguese Foundation for Science and Technology (FCT) (SFRH/BD/4892/2008) and partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through FCT—Foundation for Science and Technology, under the project BPEst-C/MAR/LA0015/2013. The authors thank the staff of the Station of Hydrobiology of the USC BEncoro do Con^ due their participation in the surveys, with special mention to J. Sánchez for separating digenean fauna existing in the stomachs of A. fallax. This work has been partially supported by the project 10PXIB2111059PR of the Xunta de Galicia and the project MIGRANET of the Interreg IV B SUDOE (South-West Europe) Territorial Cooperation Programme (SOE2/P2/E288). D.J. Nachón is supported by a PhD grant from the Xunta de Galicia (PRE/2011/198)
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
Habitat loss, fragmentation, and degradation threaten the World’s ecosystems and species. These, and other threats, will likely be exacerbated by climate change. Due to a limited budget for conservation, we are forced to prioritize a few areas over others. These places are selected based on their uniqueness and vulnerability. One of the most famous examples is the biodiversity hotspots: areas where large quantities of endemic species meet alarming rates of habitat loss. Most of these places are in the tropics, where species have smaller ranges, diversity is higher, and ecosystems are most threatened.
Species distributions are useful to understand ecological theory and evaluate extinction risk. Small-ranged species, or those endemic to one place, are more vulnerable to extinction than widely distributed species. However, current range maps often overestimate the distribution of species, including areas that are not within the suitable elevation or habitat for a species. Consequently, assessment of extinction risk using these maps could underestimate vulnerability.
In order to be effective in our quest to conserve the World’s most important places we must: 1) Translate global and national priorities into practical local actions, 2) Find synergies between biodiversity conservation and human welfare, 3) Evaluate the different dimensions of threats, in order to design effective conservation measures and prepare for future threats, and 4) Improve the methods used to evaluate species’ extinction risk and prioritize areas for conservation. The purpose of this dissertation is to address these points in Colombia and other global biodiversity hotspots.
In Chapter 2, I identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities in Colombia. I used existing range maps of 171 bird species to identify priority conservation areas that would protect the greatest number of species at risk in Colombia (endemic and small-ranged species). The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. I then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, I made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.
For Chapter 3, I identified areas where bird conservation met ecosystem service protection in the Central Andes of Colombia. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, I set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, I identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. I further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. I developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, I mapped concentrations of endemic and small-range bird species. I identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, I facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.
Chapter 4 dealt with elevational ranges of montane birds and the impact of lowland deforestation on their ranges in the Western Andes of Colombia, an important biodiversity hotspot. Using point counts and mist-nets, I surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. I compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analyzing the effect of deforestation on 134 species, I tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.
In Chapter 5, I refine the ranges of 726 species from six biodiversity hotspots by suitable elevation and habitat. This set of 172 bird species for the Atlantic Forest, 138 for Central America, 100 for the Western Andes of Colombia, 57 for Madagascar, 102 for Sumatra, and 157 for Southeast Asia met the criteria for range size, endemism, threat, and forest use. Of these 586 species, the Red List deems 108 to be threatened: 15 critically endangered, 29 endangered, and 64 vulnerable. When ranges are refined by elevational limits and remaining forest cover, 10 of those critically endangered species have ranges < 100km2, but then so do 2 endangered species, seven vulnerable, and eight non-threatened ones. Similarly, 4 critically endangered species, 20 endangered, and 12 vulnerable species have refined ranges < 5000km2, but so do 66 non-threatened species. A striking 89% of these species I have classified in higher threat categories have <50% of their refined ranges inside protected areas. I find that for 43% of the species I assessed, refined range sizes fall within thresholds that typically have higher threat categories than their current assignments. I recommend these species for closer inspection by those who assess risk. These assessments are not only important on a species-by-species basis, but by combining distributions of threatened species, I create maps of conservation priorities. They differ significantly from those created from unrefined ranges.