948 resultados para East Cork
Resumo:
The impacts of afforestation at Plynlimon in the Severn catchment, mid-Wales. and in the Bedford Ouse catchment in south-east England are evaluated using the INCA model to simulate Nitrogen (N) fluxes and concentrations. The INCA model represents the key hydrological and N processes operating in catchments and simulates the daily dynamic behaviour as well as the annual fluxes. INCA has been applied to five years of data front the Hafren and Hore headwater sub-catchments (6.8 km(2) area in total) of the River Severn at Plytilimon and the model was calibrated and validated against field data. Simulation of afforestation is achieved by altering the uptake rate parameters in the model. INCA simulates the daily N behaviour in the catchments with good accuracy as well as reconstructing the annual budgets for N release following clearfelling a four-fold increase in N fluxes was followed by a slow recovery after re-afforestation. For comparison, INCA has been applied to the large (8380 km(2)) Bedford Ouse catchment to investigate the impact of replacing 20% arable land with forestry. The reduction in fertiliser inputs from arable farming and the N uptake by the forest are predicted to reduce the N flux reaching the main river system, leading to a 33% reduction in N-Nitrate concentrations in the river water.
Resumo:
Anthropogenic changes in precipitation pose a serious threat to society—particularly in regions such as the Middle East that already face serious water shortages. However, climate model projections of regional precipitation remain highly uncertain. Moreover, standard resolution climate models have particular difficulty representing precipitation in the Middle East, which is modulated by complex topography, inland water bodies and proximity to the Mediterranean Sea. Here we compare precipitation changes over the twenty-first century against both millennial variability during the Holocene and interannual variability in the present day. In order to assess the climate model and to make consistent comparisons, this study uses new regional climate model simulations of the past, present and future in conjunction with proxy and historical observations. We show that the pattern of precipitation change within Europe and the Middle East projected by the end of the twenty-first century has some similarities to that which occurred during the Holocene. In both cases, a poleward shift of the North Atlantic storm track and a weakening of the Mediterranean storm track appear to cause decreased winter rainfall in southern Europe and the Middle East and increased rainfall further north. In contrast, on an interannual time scale, anomalously dry seasons in the Middle East are associated with a strengthening and focusing of the storm track in the north Mediterranean and hence wet conditions throughout southern Europe.
Resumo:
Global climate change and its impacts are being increasingly studied and precipitation trends are one of the measures of quantifying climate change especially in the tropics. This study uses daily rainfall data to determine if there are changes in the long-term trends in rainfall variability in the East Coast Mountains of Mauritius during the last few decades, and to investigate the factors influencing the trends in the inter-annual to inter-decadal rainfall variability. Statistical modelling has been used to investigate the trends in total seasonal rainfall, the number of rain days and the mean amount of rain per rainy days and the local, regional and large-scale factors that affect them on inter-annual to inter-decadal time scales. The strongest inter-decadal trend was found in the number of rain days for both rainfall seasons, and the other variables were found to have weak or insignificant trends. Both local factors, such as the surrounding sea surface temperatures and large-scale phenomena such as Indian Monsoon and the El Niño Southern Oscillation were found to influence rainfall patterns.
Resumo:
This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.
Resumo:
In April–July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm−3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Resumo:
The Buordakh Massif of the Cherskiy Range of sub-arctic north east Siberia, Russia has a cold continental climate and supports over 80 glaciers. Despite previous research in the region, a georeferenced map of the glaciers has only recently been completed and an enhanced version of it is reproduced in colour here. The mountains of this region reach heights in excess of 3,000 m and the glaciers on their slopes range in size from 0.1 to 10.4 km2. The mapping has been compiled through the interpretation of Landsat 7 ETM+ satellite imagery from August 2001 which has been augmented by data from a field campaign undertaken at the same time. The glaciers of the region are of the cold, ‘firn-less’ continental type and their mass balance relies heavily on the formation of superimposed ice. Moraines which lie in front of the glaciers by up to a few kilometres are believed to date from the Little Ice Age (ca. 1550-1850 AD). Over half of the glaciers mapped have shown marked retreat from these moraines.